Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genes Dev ; 30(5): 508-21, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26944678

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/genetics , Genetic Therapy , Histone Demethylases/genetics , Nuclear Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Proto-Oncogene Proteins/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Histone Demethylases/metabolism , Humans , Nuclear Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/physiopathology , Proto-Oncogene Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1
2.
EMBO J ; 30(3): 494-509, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21179004

ABSTRACT

TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T-cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells. Analysis of the genome-wide binding properties of TAL1 in these two haematopoietic lineages revealed new insight into the mechanism by which transcription factors select their binding sites in alternate lineages. Our study shows limited overlap in the TAL1-binding profile between the two cell types with an unexpected preference for ETS and RUNX motifs adjacent to E-boxes in the T-cell lineage. Furthermore, we show that TAL1 interacts with RUNX1 and ETS1, and that these transcription factors are critically required for TAL1 binding to genes that modulate T-cell differentiation. Thus, our findings highlight a critical role of the cellular environment in modulating transcription factor binding, and provide insight into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T-cell lineage.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Hematopoiesis/genetics , Leukemia, T-Cell/metabolism , Proto-Oncogene Proteins/genetics , T-Lymphocytes/metabolism , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Binding Sites/genetics , Cells, Cultured , Chromatin Immunoprecipitation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Profiling , Hematopoiesis/physiology , Humans , Jurkat Cells , Leukemia, T-Cell/genetics , Microarray Analysis , Molecular Sequence Data , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , T-Cell Acute Lymphocytic Leukemia Protein 1 , T-Lymphocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL