Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 893: 147931, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37898453

ABSTRACT

The medicinal plant of the genus Stephania holds significant economic importance in the pharmaceutical industry. However, accurately classifying and subdividing this genus remains a challenge. Herein, the chloroplast (cp) genomes of Stephania and Cyclea were sequenced, and the primary characteristics, repeat sequences, inverted repeats regions, simple sequence repeats, and codon usage bias of 17 species were comparatively analyzed. Twelve markers were identified through genome alignment and sliding window analysis. Moreover, a molecular clock analysis revealed the divergence between subgenus (subg.) Botryodiscia and the combined Cyclea, subg. Stephania and Tuberiphania during the early Oligocene epoch. Notably, the raceme-type inflorescence represents the ancestral state of the Stephania and Cyclea. The genetic relationships inferred from the cp genome and protein-coding genes exhibited similar topologies. Additionally, the paraphyletic relationship between the genera Cyclea and Stephania was confirmed. Bayesian inference, maximum likelihood, and neighbor-joining trees consistently showed that section Tuberiphania and Transcostula were non-monophyletic. In conclusion, this research provides valuable insights for further investigations into species identification, evolution, and phylogenetics within the Stephania genus.


Subject(s)
Genome, Chloroplast , Phylogeny , Bayes Theorem , Base Sequence , Repetitive Sequences, Nucleic Acid , Microsatellite Repeats
2.
Front Plant Sci ; 14: 1251829, 2023.
Article in English | MEDLINE | ID: mdl-37954994

ABSTRACT

Introduction: The potential contamination of herbal medicinal products poses a significant concern for consumer health. Given the limited availability of genetic information concerning Ajuga species, it becomes imperative to incorporate supplementary molecular markers to enhance and ensure accurate species identification. Methods: In this study, the chloroplast (cp) genomes of seven species of the genus Ajuag were sequenced, de novo assembled and characterized. Results: exhibiting lengths ranging from 150,342 bp to 150,472 bp, encompassing 86 - 88 protein-coding genes (PCGs), 35 - 37 transfer RNA, and eight ribosomal RNA. The repetitive sequences, codon uses, and cp genomes of seven species were highly conserved, and PCGs were the reliable molecular markers for investigating the phylogenetic relationship within the Ajuga genus. Moreover, four mutation hotspot regions (accD-psaI, atpH-atpI, ndhC-trnV(UAC), and ndhF-rpl23) were identified within cp genomes of Ajuga, which could help distinguish A. bracteosa and its contaminants. Based on cp genomes and PCGs, the phylogenetic tree preliminary confirmed the position of Ajuga within the Lamiaceae family. It strongly supported a sister relationship between Subsect. Genevense and Subsect. Biflorae, suggesting the merger of Subsect. Biflorae and Subsect. Genevenses into one group rather than maintaining separate categorizations. Additionally, molecular clock analysis estimated the divergence time of Ajuga to be around 7.78 million years ago. Discussion: The species authentication, phylogeny, and evolution analyses of the Ajuga species may benefit from the above findings.

3.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37599638

ABSTRACT

Momordica charantia L. is a well-known medicine and food homology plant with high pharmaceutical and nutritional values. Polysaccharides are carbohydrate polymers connected by glycosidic bonds, one of the key functional ingredients of M. charantia. Recently, M. charantia polysaccharides (MCPs) have attracted much attention from industries and researchers due to their anti-oxidant, anti-tumor, anti-diabetes, anti-bacteria, immunomodulatory, neuroprotection, and organ protection activities. However, the development and utilization of MCPs-based functional foods and medicines were hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of MCPs. Herein, we provide an overview of the extraction, purification, structural characterization, bioactivities, and mechanisms of MCPs. Besides, SAR, toxicities, application, and influences of the modification associated with bioactivities are spotlighted, and the potential development and future study direction are scrutinized. This review provides knowledge and research underpinnings for the further research and application of MCPs as therapeutic agents and functional food additives.

4.
Front Nutr ; 10: 1171004, 2023.
Article in English | MEDLINE | ID: mdl-37448668

ABSTRACT

Lotus is a famous plant of the food and medicine continuum for millennia, which possesses unique nutritional and medicinal values. Polysaccharides are the main bioactive component of lotus and have been widely used as health nutritional supplements and therapeutic agents. However, the industrial production and application of lotus polysaccharides (LPs) are hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of LPs. This review comprehensively comments on the extraction and purification methods and structural characteristics of LPs. The SARs, bioactivities, and mechanisms involved are further evaluated. The potential application and safety issues of LPs are discussed. This review provides valuable updated information and inspires deeper insights for the large scale development and application of LPs.

5.
Int J Biol Macromol ; 245: 125407, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37327937

ABSTRACT

Bletilla striata is a well-known medicinal plant with high pharmaceutical and ornamental values. Polysaccharide is the most important bioactive ingredient in B. striata and has various health benefits. Recently, B. striata polysaccharides (BSPs) have attracted much attention from industries and researchers due to their remarkable immunomodulatory, antioxidant, anti-cancer, hemostatic, anti-inflammatory, anti-microbial, gastroprotective, and liver protective effects. Despite the successful isolation and characterization of BSPs, there is still limited knowledge regarding their structure-activity relationships (SARs), safety concerns, and applications, which hinders their full utilization and development. Herein, we provided an overview of the extraction, purification, and structural features, as well as the effects of different influencing factors on the components and structures of BSPs. We also highlighted and summarized the diversity of chemistry and structure, specificity of biological activity, and SARs of BSP. The challenges and opportunities of BSPs in the food, pharmaceutical, and cosmeceutical fields are discussed, and the potential development and future study direction are scrutinized. This article provides comprehensive knowledge and underpinnings for further research and application of BSPs as therapeutic agents and multifunctional biomaterials.


Subject(s)
Neoplasms , Orchidaceae , Plants, Medicinal , Humans , Polysaccharides/chemistry , Antioxidants/pharmacology , Pharmaceutical Vehicles , Orchidaceae/chemistry
6.
Int J Biol Macromol ; 243: 125210, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37271269

ABSTRACT

Pueraria lobata (Willd.) Ohwi is an important resource with dual functions in medicine and food since ancient times. Polysaccharides are the main bioactive component of P. lobata and have various bioactivities, such as antidiabetic, antioxidant, immunological activities, etc. Due to the distinctive bioactivity of P. lobata polysaccharides (PLPs), the research on PLPs is booming. Although a series of PLPs have been isolated and characterized, the chemical structure and mechanism are unclear and need further study. Here, we reviewed recent progress in isolation, identification, pharmacological properties, and possible therapeutic mechanisms of PLPs to update awareness of these value-added natural polysaccharides. Besides, the structure-activity relationships, application status, and toxic effects of PLPs are highlighted and discussed to afford a deeper understanding of PLPs. This article may provide theoretical insights and technical guidance for developing PLPs as novel functional foods.


Subject(s)
Pueraria , Pueraria/chemistry , Hypoglycemic Agents , Structure-Activity Relationship , Polysaccharides/pharmacology
7.
Front Plant Sci ; 13: 1099856, 2022.
Article in English | MEDLINE | ID: mdl-36684764

ABSTRACT

Background: Phyllanthus urinaria L. is extensively used as ethnopharmacological material in China. In the local marketplace, this medicine can be accidentally contaminated, deliberately substituted, or mixed with other related species. The contaminants in herbal products are a threat to consumer safety. Due to the scarcity of genetic information on Phyllanthus plants, more molecular markers are needed to avoid misidentification. Methods: In this study, the complete chloroplast genome of nine species of the genus Phyllanthus was de novo assembled and characterized. Results: This study revealed that all of these species exhibited a conserved quadripartite structure, which includes a large single copy (LSC) region and small single copy (SSC) region, and two copies of inverted repeat regions (IRa and IRb), which separate the LSC and SSC regions. And the genome structure, codon usage, and repeat sequences were highly conserved and showed similarities among the nine species. Three highly variable regions (trnS-GCU-trnG-UCC, trnT-UGU-trnL-UAA, and petA-psbJ) might be helpful as potential molecular markers for identifying P. urinaria and its contaminants. In addition, the molecular clock analysis results showed that the divergence time of the genus Phyllanthus might occur at ~ 48.72 Ma. Conclusion: This study provides valuable information for further species identification, evolution, and phylogenetic research of Phyllanthus.

SELECTION OF CITATIONS
SEARCH DETAIL
...