Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Biophys Rep (N Y) ; 4(1): 100141, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38189030

ABSTRACT

Mechanosensitive (MS) channels act to protect the cytoplasmic membrane (CM) of living cells from environmental changes in osmolarity. In this report, we demonstrate the use of time-resolved second-harmonic light scattering (SHS) as a means of experimentally observing the relative state (open versus closed) of MS channels in living bacteria suspended in different buffer solutions. Specifically, the state of the MS channels was selectively controlled by changing the composition of the suspension medium, inducing either a transient or persistent osmotic shock. SHS was then used to monitor transport of the SHG-active cation, malachite green, across the bacterial CM. When MS channels were forced open, malachite green cations were able to cross the CM at a rate at least two orders of magnitude faster compared with when the MS channels were closed. These observations were corroborated using both numerical model simulations and complementary fluorescence experiments, in which the propensity for the CM impermeant cation, propidium, to stain cells was shown to be contingent upon the relative state of the MS channels (i.e., cells with open MS channels fluoresced red, cells with closed MS channels did not). Application of time-resolved SHS to experimentally distinguish MS channels opened via osmotic shock versus chemical activation, as well as a general comparison with the patch-clamp method is discussed.

2.
J Phys Chem A ; 127(42): 8782-8793, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37846886

ABSTRACT

Collisional relaxation of highly vibrationally excited acetylene, generated from the 193 nm photolysis of vinyl bromide with roughly 23,000 cm-1 of nascent vibrational energy, is studied via submicrosecond time-resolved Fourier transform infrared (FTIR) emission spectroscopy. IR emission from vibrationally hot acetylene during collisional relaxation by helium, neon, argon, and krypton rare-gas colliders is recorded and analyzed to deduce the acetylene energy content as a function of time. The average energy lost per collision, ⟨ΔE⟩, is computed using the Lennard-Jones collision frequency. Two distinct vibrational-to-translational (V-T) energy transfer regimes in terms of the acetylene energy are identified. At vibrational energies below 10,000-14,000 cm-1, energy transfer efficiency increases linearly with molecular energy content and is in line with typical V-T behavior in quantity. In contrast, above 10,000-14,000 cm-1, the V-T energy transfer efficiency displays a dramatic and rapid increase. This increase is nearly coincident with the acetylene-vinylidene isomerization limit, which occurs nearly 15,000 cm-1 above the acetylene zero-point energy. Combined quasi-classical trajectory calculations and Schwartz-Slawsky-Herzfeld-Tanczos theory point to a vinylidene contribution being responsible for the large enhancement. This observation illustrates the influence of energetically accessible structural isomers to greatly enhance the energy transfer rates of highly vibrationally excited molecules.

3.
J Chem Phys ; 159(15)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37846956

ABSTRACT

The electronic and vibrational spectra of the meso-tetrakis(4-sulfonatophenyl)-porphyrins (TSPP) have been studied computationally using the PFD-3B functional with time-dependent density functional theory for the excited states. The calculated UV-vis absorption and emission spectra in aqueous solution are in excellent agreement with the experimental measurements of both H2TSPP-4 (monomer) at high pH and H4TSPP-2 (forming J-aggregate) at low pH. Moreover, our calculations reveal an infrared absorption at 1900 cm-1 in the singlet and triplet excited states that is absent in the ground state, which is chosen as a probe for transient IR absorption spectroscopy to investigate the vibrational dynamics of the excited state. Specifically, the S2 to S1 excited state internal conversion process time, the S1 state vibrational relaxation time, and the lifetime of the S1 excited electronic state are all quantitatively deduced.

5.
Angew Chem Int Ed Engl ; 61(42): e202205608, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36037071

ABSTRACT

Phase transitions of lipid bilayer membranes should affect passive transport of molecules. While this hypothesis has been used to design drug-releasing thermosensitive liposomes, the effect has yet to be quantified. Herein, we use time-resolved second harmonic light scattering to measure transport of a molecular cation across membranes of unilamellar liposomes composed of the total lipid extract of E. coli from 9 °C to 36 °C, in which two distinct phase transitions (gel to liquid-disordered phase) have been identified. While the transport rate slowly increases with temperature as a diffusion process, dramatic jumps are observed at 14.7 °C and 27.6 °C, the known phase transitions. The transport rate constant measured as (7.3±0.8)×10-3  s-1 in the liquid-disordered phase at 36 °C is 35-times faster than (2.1±0.2)×10-4  s-1 of the gel phase at 9 °C. For the mixed-phase between these two phases, the measured rates are consistent with a structure of gel domains among a liquid-disordered bulk.


Subject(s)
Lipid Bilayers , Liposomes , Cell Membrane , Diffusion , Escherichia coli , Lipid Bilayers/chemistry , Liposomes/chemistry , Temperature , Unilamellar Liposomes
6.
Acc Chem Res ; 55(14): 1879-1888, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35642792

ABSTRACT

Photosensitized semiconducting nanomaterials have received considerable attention because of their applications in photocatalytic and photoelectronic devices. In such systems, photoexcited electrons with sufficiently high energies can be injected into the conduction band (CB) of an adjacent semiconductor. These excited electrons are subjected to various physical processes that can lead to their annihilation before exercising their catalytic/electric functions, and the efficiency of the photosensitized functions depends on the quantity of CB electrons produced and how long they remain near the surface region of the semiconductor. The rise and decay of photoexcited electrons in the semiconductor CB can be probed with transient IR absorption (TA), which was first demonstrated by Lian and co-workers. Results from various laboratories have since revealed that electrons appear in the CB following the excitation of the photosensitizer in tens to hundreds of femtoseconds and that the decay of the CB electrons typically exhibits multiple exponentials on varying ultrafast time scales. The size of the semiconductor nanoparticle appears to influence the diffusion of the CB electrons and thus their lifetimes. In all studies reported, the observed multiexponential decays have been analyzed and interpreted using purely phenomenological models, in which the individual decays were intuitively assigned to one specific relaxation or loss process. In reality, however, each exponential decay can be a convolution of multiple physical processes. In this Account, we report a universally applicable physical model, constructed by including all known electron dynamic processes, to quantitatively account for the multiexponential decays. We characterize the model as universal, as it can be used to analyze our own TA measurements, as well as data acquired in other laboratories. In our study of TiO2 nanorods photosensitized by Ag platelets, we demonstrate that each of the observed triple-exponential decays corresponds to a convolution of several physical decay processes occurring on similar time scales. The rate of each of the processes can be deconvoluted and determined to construct a complete, physically based model to assess the most important question: How many CB electrons are near the semiconductor surface region and what is their lifetime?The size of the semiconductor is an important consideration. Intuitively, as the semiconductor volume increases, there is more room for CB electrons to diffuse around, which increases their lifetime as annihilation occurs primarily at the surface. Indeed, Tachiya and co-workers previously reported that this lifetime increases with particle size. Nevertheless, while CB electrons live longer in the bulk of the particle, they are only useful when they are at the surface. Overall, what really matters is the CB electrons near the surface region, where the photosensitized functions actually occur. In applying our model to analyze the previously reported size-dependent Au/TiO2 results, we successfully reproduced the observation that larger semiconductor nanoparticles lengthen the lifetime of CB electrons because of diffusion into the bulk. More importantly, however, our model reveals that the size of the semiconductor has almost no influence on the retention of CB electrons near the semiconductor surface. This information is only revealed when all physical processes are quantitatively taken into account for the observed electron dynamics, which is not feasible with a phenomenological approach.


Subject(s)
Nanocomposites , Quantum Dots , Diffusion , Electrons , Humans , Semiconductors
7.
ACS Infect Dis ; 8(6): 1124-1133, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35297612

ABSTRACT

Indole signaling in bacteria plays an important role in antibiotic resistance, persistence, and tolerance. Here, we used the nonlinear optical technique, second-harmonic light scattering (SHS), to examine the influence of exogenous indole on the bacterial uptake of the antimicrobial quaternary ammonium cation (qac), malachite green. The transport rates of the antimicrobial qac across the individual membranes of Escherichia coli and Pseudomonas aeruginosa, as well as liposomes composed of the polar lipid extract of E. coli, were directly measured using time-resolved SHS. Whereas exogenous indole was shown to induce a 2-fold increase in the transport rate of the qac across the cytoplasmic membranes of the wild-type bacteria, it had no influence on a knockout strain of E. coli lacking the tryptophan-specific transport protein (Δmtr). Likewise, indole did not affect the transport rate of the qac diffusing across the liposome membrane. Our findings suggest that indole increases the bacterial uptake of antimicrobials through an interaction with the Mtr permease.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Indoles/pharmacology
8.
J Chem Phys ; 156(2): 024703, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35032973

ABSTRACT

The lifetime for injecting hot electrons generated in Ag nanoplatelets to nearby TiO2 nanorods was measured with ultrafast transient IR absorption to be 13.1 ± 1.5 fs, which is comparable to values previously reported for much smaller spherical Ag nanoparticles. Although it was shown that the injection rate decreases as the particle size increases, this observation can be explained by the facts that (1) the platelet has a much larger surface to bulk ratio and (2) the platelet affords a much larger surface area for direct contact with the semiconductor. These two factors facilitate strong Ag-TiO2 coupling (as indicated by the observed broadened surface plasmon resonance band of Ag) and can explain why Ag nanoplatelets have been found to be more efficient than much smaller Ag nanoparticles as photosensitizers for photocatalytic functions. The fast injection rate, together with a stronger optical absorption in comparison with Au and dye molecules, make Ag nanoplatelets a preferred photosensitizer for wide bandgap semiconductors.

9.
J Phys Chem A ; 125(41): 9065-9070, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34613728

ABSTRACT

Through coherent excitation of a pair of vibronically coupled eigenlevels, an oscillation of 130 kcal/mol in energy excitation between electronic and vibrational motions (on a time scale of 10-8 s) is created for the triatomic molecule, sulfur dioxide (SO2). The reactivity of the molecule can be influenced depending upon whether the molecule is vibrationally or electronically excited with this substantial amount of energy. The effect of excitation on reactivity is demonstrated through SO2 photodissociation as a function of time following coherent excitation, monitored by multiphoton ionization of the SO product.

10.
Biophys J ; 120(12): 2461-2470, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33932437

ABSTRACT

Bacterial surface charge is a critical characteristic of the cell's interfacial physiology that influences how the cell interacts with the local environment. A direct, sensitive, and accurate experimental technique capable of quantifying bacterial surface charge is needed to better understand molecular adaptations in interfacial physiology in response to environmental changes. We introduce here the method of second-harmonic light scattering (SHS), which is capable of detecting the number of molecular ions adsorbed as counter charges on the exterior bacterial surface, thereby providing a measure of the surface charge. In this first demonstration, we detect the small molecular cation, malachite green, electrostatically adsorbed on the surface of representative strains of Gram-positive and Gram-negative bacteria. Surprisingly, the SHS-deduced molecular transport rates through the different cellular ultrastructures are revealed to be nearly identical. However, the adsorption saturation densities on the exterior surfaces of the two bacteria were shown to be characteristically distinct. The negative charge density of the lipopolysaccharide coated outer surface of Gram-negative Escherichia coli (6.6 ± 1.3 nm-2) was deduced to be seven times larger than that of the protein surface layer of Gram-positive Lactobacillus rhamnosus (1.0 ± 0.2 nm-2). The feasibility of SHS-deduced bacterial surface charge density for Gram-type differentiation is presented.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Adsorption , Gram-Positive Bacteria , Ions , Surface Properties
11.
Chem Asian J ; 15(2): 200-213, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31721448

ABSTRACT

The nonlinear optical phenomenon second harmonic light scattering (SHS) can be used for detecting molecules at the membrane surfaces of living biological cells. Over the last decade, SHS has been developed for quantitatively monitoring the adsorption and transport of small and medium size molecules (both neutral and ionic) across membranes in living cells. SHS can be operated with both time and spatial resolution and is even capable of isolating molecule-membrane interactions at specific membrane surfaces in multi-membrane cells, such as bacteria. In this review, we discuss select examples from our lab employing time-resolved SHS to study real-time molecular interactions at the plasma membranes of biological cells. We first demonstrate the utility of this method for determining the transport rates at each membrane/interface in a Gram-negative bacterial cell. Next, we show how SHS can be used to characterize the molecular mechanism of the century old Gram stain protocol for classifying bacteria. Additionally, we examine how membrane structures and molecular charge and polarity affect adsorption and transport, as well as how antimicrobial compounds alter bacteria membrane permeability. Finally, we discuss adaptation of SHS as an imaging modality to quantify molecular adsorption and transport in sub-cellular regions of individual living cells.

12.
J Phys Chem A ; 123(49): 10465-10468, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31826626
13.
iScience ; 19: 1079-1089, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31522118

ABSTRACT

Singlet fission is known to improve solar energy utilization by circumventing the Shockley-Queisser limit. The two essential steps of singlet fission are the formation of a correlated triplet pair and its subsequent quantum decoherence. However, the mechanisms of the triplet pair formation and decoherence still remain elusive. Here we examined both essential steps in single crystalline hexacene and discovered remarkable anisotropy of the overall singlet fission rate along different crystal axes. Since the triplet pair formation emerges on the same timescale along both crystal axes, the quantum decoherence is likely responsible for the directional anisotropy. The distinct quantum decoherence rates are ascribed to the notable difference on their associated energy loss according to the Redfield quantum dissipation theory. Our hybrid experimental/theoretical framework will not only further our understanding of singlet fission, but also shed light on the systematic design of new materials for the third-generation solar cells.

14.
J Phys Chem A ; 123(32): 6927-6936, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31339307

ABSTRACT

Collisional deactivation of vibrationally excited hydrogen isocyanide (HNC) by inert gas atoms was characterized using nanosecond time-resolved Fourier transform infrared emission spectroscopy. HNC, with an average nascent internal energy of 25.9 ± 1.4 kcal mol-1, was generated following the 193 nm photolysis of vinyl cyanide (CH2CHCN) and collisionally deactivated with the series of inert atomic gases: He, Ar, Kr, and Xe. Time-dependent IR emission allows simultaneous experimental observation of the ν1 NH and ν3 NC stretch emissions from vibrationally excited HNC. Subsequent spectral fit analysis enables direct determination of the average energy of HNC in each spectrum and therefore a measure of the average energy lost per collision, ⟨ΔE⟩, as a function of internal energy. Collisional deactivation of excited HNC is shown to be relatively efficient, exhibiting ⟨ΔE⟩ values more than an order of magnitude larger than comparably sized molecules at similar internal energies. Furthermore, the lighter inert gases are shown to be more efficient quenchers. Both observations can be qualitatively explained by the momentum gap law modeled through the repulsive force dominated vibration-to-translation energy transfer mechanism. The feasibility of efficient collisional deactivation as a contributing factor to the observed overabundance of astrophysical HNC is discussed.

15.
Biochemistry ; 58(14): 1841-1844, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30912648

ABSTRACT

We demonstrate that time-resolved second harmonic (SH) light scattering, when applied as an imaging modality, can be used to spatially resolve the adsorption and transport rates of molecules diffusing across the membrane in a living cell. As a representative example, we measure the passive transport of the amphiphilic ion, malachite green, across the plasma membrane in living human dermal fibroblast cells. Analysis of the time-resolved SH images reveals that membrane regions, which appear to be enduring higher stress, exhibit slower transport rates. It is proposed that this stress-transport relation may be a result of local enrichment of membrane rigidifiers as part of a response to maintain membrane integrity under strain.


Subject(s)
Cell Membrane/metabolism , Fibroblasts/metabolism , Rosaniline Dyes/metabolism , Second Harmonic Generation Microscopy/methods , Single-Cell Analysis/methods , Time-Lapse Imaging/methods , Adsorption , Biological Transport , Cells, Cultured , Dermis/cytology , Diffusion , Fibroblasts/cytology , Humans , Reproducibility of Results , Rosaniline Dyes/chemistry , Scattering, Radiation
16.
J Chem Phys ; 150(10): 104705, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30876365

ABSTRACT

We present an experimental study, using the surface sensitive technique, second harmonic light scattering (SHS), to examine the influence of structure on the propensity of a molecule to passively diffuse across a phospholipid membrane. Specifically, we monitor the relative tendency of the structurally similar amphiphilic cationic dyes, malachite green (MG) and crystal violet (CV), to transport across membranes in living cells (E. coli) and biomimetic liposomes. Despite having nearly identical molecular structures, molecular weights, cationic charges, and functional groups, MG is of lower overall symmetry and consequently has a symmetry allowed permanent dipole moment, which CV does not. The two molecules showed drastically different interactions with phospholipid membranes. MG is observed to readily cross the hydrophobic interior of the bacterial cytoplasmic membrane. Conversely, CV does not. Furthermore, experiments conducted with biomimetic liposomes, constructed from the total lipid extract of E. coli and containing no proteins, show that while MG is able to diffuse across the liposome membrane, CV does not. These observations indicate that the SHS results measured with bacteria do not result from the functions of efflux pumps, but suggests that MG possesses an innate molecular property (which is absent in CV) that allows it to passively diffuse across the hydrophobic interior of a phospholipid membrane.

17.
J Phys Chem A ; 122(46): 9001-9013, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30373368

ABSTRACT

Photolysis of the diazine heterocycle, pyrazine, following irradiation at 308, 248, and 193 nm was examined using nanosecond time-resolved Fourier transform infrared emission spectroscopy. The resulting time-resolved IR emission spectra reveal that for 308 and 248 nm vibrationally highly excited pyrazine is produced, but no photolysis products were detected. However, at 193 nm excitation, the measured IR emission spectra consist solely of resonances originating from rovibrationally excited photofragments, including acetylene (HCCH), hydrogen cyanide (HCN), and hydrogen isocyanide (HNC), indicating that photofragmentation proceeds from vibrationally highly excited pyrazine on the ground electronic state. Spectral fit analysis of the time-resolved HCN and HNC IR emission band shapes and intensities allowed an estimate of the nascent product population distributions, from which a lower bound estimate of the HNC/HCN branching ratio was deduced as Φ ≥ 0.07. Additionally, ab initio calculations were performed in order to examine the propensity of photoinduced reactions on the ground- and lowest-energy excited-state surfaces. The calculations provide a basis for understanding the wavelength dependence of the UV photolysis of pyrazine, the photolytic production of HNC, and also explain previous experimental observations in the literature.

18.
J Phys Chem Lett ; 9(15): 4155-4159, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-29991257

ABSTRACT

It is found that, by curing the surface defects that quench photoexcited carriers, luminescence efficiency of metallic nanoparticles can be dramatically increased. For Ag nanoparticles, as much as 300 times increase in photoexcitation induced luminescence is observed upon surface adsorption of ethanethiol. The same treatment increases Au nanoparticle luminescence efficiency by a factor of 3. A model based on the elimination of surface defects by the sulfur-metal bond formed upon thiol adsorption can quantitatively account for the observations, which also indicate that nanoparticles without proper surface treatment typically have low luminescence quantum yields.

19.
ACS Med Chem Lett ; 9(6): 569-574, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29937984

ABSTRACT

We present a nonlinear light scattering method for monitoring, with real-time resolution and membrane specificity, changes in molecular adsorption, and transport at bacterial membranes induced by an antimicrobial compound. Specifically, time-resolved second-harmonic light scattering (SHS) is used to quantify azithromycin-induced changes to bacterial membrane permeability in colloidal suspensions of living Escherichia coli. Variations in membrane properties are monitored through changes in the adsorption and transport rates of malachite green, a hydrophobic cation that gives SHS signal. Regardless of concentration, instantaneous treatment with azithromycin showed no significant changes in membrane permeability. However, 1 h pretreatment with subminimum inhibitory concentrations of azithromycin induced an order-of-magnitude enhancement in the permeability of both the outer membrane and, through facilitation of a new transport mechanism, the cytoplasmic membrane of the bacteria as well. This study illustrates SHS as a novel tool for monitoring antimicrobial-induced changes to membrane properties in living bacteria.

20.
Environ Sci Technol ; 51(13): 7496-7501, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28605184

ABSTRACT

Photosensitized reactions involving imidazole-2-carboxaldehyde (IC) have been experimentally observed to contribute to secondary organic aerosol (SOA) growth. However, the extent of photosensitized reactions in ambient aerosols remains poorly understood and unaccounted for in atmospheric models. Here we use GAMMA 4.0, a photochemical box model that couples gas-phase and aqueous-phase aerosol chemistry, along with recent laboratory measurements of the kinetics of IC photochemistry, to analyze IC-photosensitized SOA formation in laboratory and ambient settings. Analysis of the laboratory results of Aregahegn et al. (2013) suggests that photosensitized production of SOA from limonene, isoprene, α-pinene, ß-pinene, and toluene by 3IC* occurs at or near the surface of the aerosol particle. Reactive uptake coefficients were derived from the experimental data using GAMMA 4.0. Simulations of aqueous aerosol SOA formation at remote ambient conditions including IC photosensitizer chemistry indicate less than 0.3% contribution to SOA growth from direct reactions of 3IC* with limonene, isoprene, α-pinene, ß-pinene, and toluene, and an enhancement of less than 0.04% of SOA formation from other precursors due to the formation of radicals in the bulk aerosol aqueous phase. Other, more abundant photosensitizer species, such as humic-like substances (HULIS), may contribute more significantly to aqueous aerosol SOA production.


Subject(s)
Aerosols , Monoterpenes , Bicyclic Monoterpenes , Bridged Bicyclo Compounds , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...