Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Affect Disord ; 348: 265-274, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38159655

ABSTRACT

Impaired glutamate recycling plays an important role in the pathophysiology of depression, and it has been demonstrated that glutamate transporter-1 (GLT-1) on astrocytes is involved in glutamate uptake. Studies have shown that repetitive transcranial magnetic stimulation (rTMS) is effective in treating depression, however, the exact mechanism of rTMS treatment remains unclear. Here, we used a chronic unpredictable mild stress (CUMS) protocol to induce depression-like behaviors in rats followed by rTMS treatment. Behavioral assessment was primarily through SPT, FST, OFT and body weight. Histological analysis focused on GFAP and GLT-1 expression, synaptic plasticity, apoptosis and PI3K/Akt/CREB pathway-related proteins. The results showed that rTMS treatment increased sucrose preference, improved locomotor activity, shortened immobility time as well as increased body weight. And rTMS intervention reversed the elevated glutamate concentration in the hippocampus of CUMS rats using an ELISA kit. Moreover, rTMS ameliorated the reduction in GFAP and GLT-1 expression, alleviated the decrease in BDNF, PSD95 and synapsin-1 expression, also reversed the expression levels of BAX and Bcl2 in the hippocampus of CUMS-induced rats. Moreover, rTMS also increased the protein phosphorylation level of PI3K/Akt/CREB pathway. These results suggest that rTMS treatment ameliorates depression-like behaviors in the rat model by reversing the reduction of GLT-1 on astrocytes and reducing glutamate accumulation in the synaptic cleft, which in turn ameliorates synaptic plasticity damage and neuronal apoptosis. The regulation of GLT-1 by rTMS may be through the PI3K/Akt/CREB pathway.


Subject(s)
Glutamic Acid , Transcranial Magnetic Stimulation , Rats , Animals , Glutamic Acid/metabolism , Transcranial Magnetic Stimulation/methods , Astrocytes , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Depression/metabolism , Body Weight , Hippocampus/metabolism , Stress, Psychological/therapy
2.
Gene ; 885: 147705, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37572799

ABSTRACT

BACKGROUND & OBJECTIVE: Myocardial fibrosis remodeling is a key event in the development of heart anomalousness and dysfunction after myocardial infarction (MI). The purpose of this study was to explore the effect of activating transcription factor 3 (ATF3) on myocardial fibrosis remodeling after MI and its underlying mechanism, so as to provide a theoretical basis for the clinical development of new strategies for MI treatment. METHODS: MI mouse formers were structured by hypodesmus of the left anterior descending (LAD) arteria coronaria of mice, and primary cardiac fibroblasts (CFs) were separated and cultivated to investigate the effect of ATF3 on myocardial fibrosis after MI and its mechanism. RESULTS: Increased collagen content and autophagic flux were found in the left ventricle (LV) tissues of MI mice as shown by Sirius red staining and Western blotting (WB) analysis. Meanwhile, immunofluorescence staining and WB analysis showed that ATF3 was raised in response to MI damage. After remedy with angiotensin II (AngII), the activity and differentiation of CFs were significantly raised, the expression of collagens was increased, and the level of autophagy was notably increased. Furthermore, AngII stimulation remarkably raised the expression of ATF3. Interestingly, knockdown of ATF3 in AngII-CFs reversed the above changes. In addition, after intervention with 3-methyladenine (3-MA), an autophagy restrainer, the activity and differentiation of AngII-CFs, as well as the relative collagen levels and autophagic flux were reduced. However, up-regulation of ATF3 protein expression partially reversed the effect of 3-MA on AngII-CFs. CONCLUSION: ATF3 can regulate the proliferation of CFs and collagen production by affecting autophagy, thus affecting myocardial fibrosis remodeling after MI.


Subject(s)
Cardiomyopathies , Myocardial Infarction , Animals , Mice , Activating Transcription Factor 3/genetics , Autophagy , Collagen/metabolism , Fibroblasts/metabolism , Fibrosis , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardium/metabolism
3.
Front Psychiatry ; 14: 1132666, 2023.
Article in English | MEDLINE | ID: mdl-37113544

ABSTRACT

Background: Functional near-infrared spectroscopy (fNIRS) identifies neurophysiological differences between psychiatric disorders by assessing cortical hemodynamic function. Few trials have studied differences in brain functional activity between first-episode medication-naïve depression patients (FMD) and recurrent major depression (RMD). We aimed to determine the differences between FMD and RMD in oxygenated hemoglobin concentration ([oxy-Hb]), and to investigate the correlation between frontotemporal cortex activation and clinical symptoms. Methods: We recruited 40 patients with FMD, 53 with RMD, and 38 healthy controls (HCs) from May 2021 to April 2022. Symptom severity was assessed with the 24-item Hamilton Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A). A 52-channel fNIRS measured changes in [oxy-Hb] during VFT performance. Results: Both patient groups performed poorly during the VFT task compared with HC (FDR p < 0.05), but there was no significant difference between the two patient groups. Analysis of variance showed that mean [oxy-Hb] activation was lower in both the frontal and temporal lobes in the MDD group compared with HCs (FDR p < 0.05). Additionally, patients with RMD had a significantly lower hemodynamic response in the right dorsolateral prefrontal cortex (DLPFC) and dorsal frontal pole cortex (DFPC) than patients with FMD (FDR p < 0.05). No significant correlation was found between changes in mean [oxy-Hb] and either medical history or clinical symptoms (FDR p < 0.05). Conclusion: The presence of different neurofunctional activity in some of the same brain regions in FMD and RMD patients implied a link between the level of complexity activation in frontal regions and the stage of MDD. Cognitive impairment may already be present at the beginning of an MDD episode. Clinical trial registration: www.chictr.org.cn, identifier ChiCTR2100043432.

4.
Dev Comp Immunol ; 139: 104567, 2023 02.
Article in English | MEDLINE | ID: mdl-36228808

ABSTRACT

The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) recognizes exogenous double-stranded DNA and produces 2'3'-cyclic GMP-AMP (2'3'-cGAMP), activating the stimulator of interferon genes (STING) and innate immunity. Bovine cGAS functions remain poorly understood. Herein, the coding sequence of the bo-cGAS gene was obtained and its recognition function was investigated. Bo-cGAS consists of 1542 nucleotides and the encoding acid sequence contained high sequence homology to that of other livestock. Bo-cGAS was localized in the endoplasmic reticulum and was abundant in the lung. Bo-cGAS and bo-STING coexistence significantly activated the IFN-ß promotor. Synthesized 2'3'-cGAMP activated the STING-dependent pathway. Upon bo-cGAS recognition of poly(dA:dT) and bovine herpesvirus type 1 (BHV-1), Viperin transcription displayed the opposite time-dependent trend. Significant restriction of IFN-ß transcription but augmentation of myxovirus resistance protein 1 (Mx1) and Viperin occurred during BHV-1 infection. Thus, bo-cGAS recognized exogenous double-stranded DNA and triggered the STING-dependent IFN-ß production pathway.


Subject(s)
DNA , Interferon-beta , Animals , Interferon-beta/genetics
5.
Front Cell Infect Microbiol ; 12: 942987, 2022.
Article in English | MEDLINE | ID: mdl-35873151

ABSTRACT

Bovine herpesvirus type 1 (BHV-1) is a neurotropic herpesvirus that causes infectious rhinotracheitis and vulvovaginitis in cattle. The virion host shutoff protein encoded by the BHV-1 UL41 gene is highly conserved in the Alphaherpesvirinae subfamily. This protein can degrade viral and host messenger RNA (mRNA) to interrupt host defense and facilitate the rapid proliferation of BHV-1. However, studies on the BHV-1 UL41 gene are limited, and BHV-1 defective virus construction using the CRISPR/Cas9 system is somewhat challenging. In this study, we rapidly constructed a BHV-1 UL41-deficient strain using the CRISPR/Cas9 system in BL primary bovine-derived cells. BHV-1 UL41-defective mutants were screened by Western blot analysis using specific polyclonal antibodies as the primary antibodies. During the isolation and purification of the defective strain, a mixed virus pool edited by an efficient single-guide RNA (sgRNA) showed a plaque number reduction. Viral growth property assessment showed that BHV-1 UL41 was dispensable for replication, but the UL41-defective strain exhibited early and slowed viral replication. Furthermore, the BHV-1 UL41-deficient strain exhibited enhanced sensitivity to temperature and acidic environments. The BHV-1 UL41-deficient strain regulated viral and host mRNA levels to affect viral replication.


Subject(s)
CRISPR-Cas Systems , Viral Proteins , Animals , Cattle , Defective Viruses/genetics , Defective Viruses/metabolism , RNA, Messenger/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
6.
Vet Microbiol ; 268: 109415, 2022 May.
Article in English | MEDLINE | ID: mdl-35395543

ABSTRACT

Bovine parainfluenza virus type 3 (BPIV3) is one of the most important viral respiratory pathogens of cattle. No specific therapies are available for BPIV3 infection; vaccination is one of the most effective ways to prevent BPIV3 infection. We therefore prepared the self-assembled BPIV3 nanoparticles by genetically fusing the ectodomain of BPIV3 haemagglutinin-neuraminidase (HN) (HNex) to the NH2 terminus of ferritin (HNex-RFNp) using a baculovirus expression system. It was found that HNex-RFNp-induced bone marrow-derived dendritic cell (BMDC) maturation through the upregulated expression of surface molecules (MHC II, CD80, CD86, and CD40), increased the secretion of inflammatory cytokines (IL-6, IL-12, TNF-α, and IFN-γ), and reduced antigen phagocytosis and T cell activation capacity. HNex-RFNp positively regulated IκBα and NF-κB (p65) phosphorylation and facilitated NF-κB (p65) translocation into the nuclei of mature BMDCs. Incubating RFNp-treated BMDCs with TLR4 and NF-κB (p65) inhibitors, suppressed surface molecule expression as well as pro-inflammatory cytokine production and IκBα and NF-κB (p65) activities. The BPIV3 HNex protein induced BMDC maturation to some extent but was significantly weaker than HNex-RFNp. We found that HNex-RFNp induced a higher titre of specific antibodie, haemagglutinin inhibition (HI) antibody, and virus neutralisation (VN) antibody, and a comprehensive cellular immune response. We examined protection against BPIV3 challenge in a mouse model. Pathological changes were not observed in the lungs of HNex-RFNp-vaccinated mice. Levels of BPIV3 RNA and virus titres in the lungs and trachea were significantly lower in the HNex-RFNp, than HNex, inactivated BPIV3, and PBS groups. In summary, HNex-RFNp elicited better immunogenicity than HNex or inactivated BPIV3 and could be developed as an effective vaccine to protect against BPIV3 infection.


Subject(s)
Dendritic Cells , NF-kappa B , Nanoparticles , Parainfluenza Virus 3, Bovine , Viral Vaccines , Virus Diseases , Animals , Cattle , Dendritic Cells/immunology , Hemagglutinins/metabolism , Immunogenicity, Vaccine , Lymphocyte Activation , Mice , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Viral Vaccines/immunology , Virus Diseases/prevention & control , Virus Diseases/veterinary
7.
Panminerva Med ; 64(1): 31-37, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32414226

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is the myocardial avascular necrosis syndrome caused by coronary atherosclerotic plaque rupture, thrombosis or coronary artery occlusion. Therefore, it is of great significance to find new targets for the treatment of myocardial infarction. The purpose of this study was to investigate the effect of microRNA-379 (miR-379) on AMI and its mechanism. METHODS: MiR-379 mimic was used to transfect H9c2 cells and we determined the protective effect of miR-379 on H9c2 by detecting the level of apoptosis. TargetScan software was used to detect miR-379's downstream targets. We constructed siRNA to analyze the effect of miR-379's downstream targets on H9c2 cells. In addition, we used miR-379 agomir to inject the tail vein of AMI rats to verify the effect of miR-379 on rat cardiomyocytes. RESULTS: TargetScan detected that miR-379 and Tumor necrosis factor-α-induced protein 8 (TNFAIP8) may have binding sites and the dual luciferase reporter assay found that miR-379 binds to TNFAIP8 and inhibits its activity. MiR-379 mimic was found to reduce the expression of caspase3 and caspase9 in H9c2 cells and thereby reduce H2O2-induced cell damage. Inhibition of TNFAIP8 also significantly reduced apoptosis level and inhibited the NF-κB signaling pathway in H9c2 cells. Finally, miR-379 agomir was used to inject the tail vein of AMI rats and verified the protective effect of miR-379 in the heart in vivo. CONCLUSIONS: MiR-379 has a binding site with TNFAIP8 and can inhibit its activity by binding to TNFAIP8 mRNA. SiRNA-TNFAIP8 can inhibit the NF-κB signaling pathway and protect myocardial cells from AMI-induced myocardial damage by reducing the apoptosis level of myocardial cells.


Subject(s)
Apoptosis Regulatory Proteins , MicroRNAs , Myocardial Infarction , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats
8.
Medicine (Baltimore) ; 100(22): e25887, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34087832

ABSTRACT

BACKGROUND: In-stent restenosis (ISR) is one of the most important complications and impacts the long-term effects after percutaneous coronary intervention (PCI) in patients with coronary heart disease (CHD). Related studies have revealed that microRNA (miRNA) can predict ISR in CHD patients. MiRNA-126 may be a potential biomarker for the diagnosis of ISR. However, the accuracy of miRNA-126 in the diagnosis of ISR is still controversial. Therefore, this study carried out meta-analysis to further evaluate the accuracy of miRNA-126 in the diagnosis of ISR. At the same time, bioinformatics is used to predict the target genes and miRNA-126 may be involved in regulation, so as to provide theoretical support for the precise treatment of CHD. METHODS: The literatures on the miRNA-126 diagnosis of ISR in CHD patients were collected by searching on computer through China National Knowledge Infrastructure, Wanfang, China Biology Medicine disc, PubMed, EMBASE, Cochrane Library and Web of Science. The retrieval time is set to build the database until April 2021. The meta-analysis of the literatures that meet the quality standards was conducted by Stata 16.0 software. TargetScan database, PicTar database, miRanda database, and miRDB database were used to predict miRNA-126 intersection target genes. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis of miRNA-126 target genes were performed by using DAVID database. STRING database was applied to analyze the protein-protein interaction (PPI) network of miRNA-126 target genes. The "Networkanalyzer" function of Cytoscape3.7.2 software is adopted to analyze the network topology attributes, so as to find out the core genes of PPI network. RESULTS: The results of this meta-analysis will be submitted to a peer-reviewed journal for publication. CONCLUSION: In this study, meta-analysis and bioinformatics analysis were adopted to further evaluate the accuracy of miRNA-126 in the diagnosis of ISR in CHD patients, and to explore the mechanism of the action of miRNA-126 and understand related pathways. ETHICS AND DISSEMINATION: The private information from individuals will not be published. This systematic review also should not damage participants' rights. Ethical approval is not available. The results may be published in a peer-reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER: DOI 10.17605/OSF.IO/9FMR5.


Subject(s)
Coronary Disease/surgery , MicroRNAs/biosynthesis , Stents/adverse effects , Biomarkers , Computational Biology , Constriction, Pathologic , Gene Ontology , Humans , Protein Interaction Maps , Research Design , Meta-Analysis as Topic
9.
Medicine (Baltimore) ; 100(10): e24966, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33725861

ABSTRACT

BACKGROUND: Evidence reveals that microRNA (miRNA) can predict coronary restenosis in patients suffering from coronary heart disease (CHD) after percutaneous coronary intervention (PCI). Perhaps, miRNA-21 is a promising biomarker for the diagnosis of coronary restenosis after PCI. However, the accuracy of miRNA-21 has not been systematically evaluated. Therefore, it is necessary to perform meta-analysis to certify the diagnostic values of miRNA-21 on coronary restenosis after PCI. METHODS: China National Knowledge Infrastructure, Wanfang, VIP, and China Biology Medicine disc, PubMed, EMBASE, Cochrane Library, and Web of Science were searched for relevant studies to explore the potential diagnostic values of miRNA-21 on coronary restenosis after PCI from inception to January 2021. All data were extracted by 2 experienced researchers independently. The risk of bias about the meta-analysis was confirmed by the Quality Assessment of Diagnostic Accuracy Studies-2. The data extracted were synthesized and heterogeneity was investigated as well. All of the above statistical analyses were carried out with Stata 16.0. RESULTS: This study proved the pooled diagnostic performance of miRNA-21 on coronary restenosis after PCI. CONCLUSION: This study clarified confusions about the specificity and sensitivity of miRNA-21 on coronary restenosis after PCI, thus further guiding their promotion and application. ETHICS AND DISSEMINATION: Ethical approval is not required for this study. The systematic review will be published in a peer-reviewed journal, presented at conferences, and shared on social media platforms. This review would be disseminated in a peer-reviewed journal or conference presentations. OSF REGISTRATION NUMBER: DOI 10.17605/OSF.IO/356QK.


Subject(s)
Coronary Restenosis/epidemiology , Coronary Stenosis/surgery , MicroRNAs/blood , Percutaneous Coronary Intervention/adverse effects , Biomarkers/blood , Coronary Stenosis/blood , Humans , Meta-Analysis as Topic , Predictive Value of Tests , Risk Assessment/methods , Systematic Reviews as Topic
10.
Medicine (Baltimore) ; 100(4): e24407, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33530239

ABSTRACT

BACKGROUND: Arteriosclerosis has genetic correlation. Many studies have shown that angiotensin II type 1 receptor (AT1R) gene A1166C polymorphism is highly associated with arteriosclerosis, but there is no evidence-based basis. The purpose of this study is to systematically evaluate the relationship between AT1R gene A1166C polymorphism and arteriosclerosis. METHODS: The search time is set from the establishment of the database in December 2020 in this study. The search database include China National Knowledge Infrastructure (CNKI), Wanfang, VIP and China Biology Medicine disc (CBM), PubMed, EMBASE, Web of Science, and the Cochrane Library. The subjects are observational studies on the relationship between AGTR1 A1166C polymorphism and arteriosclerosis (including case-control study, cross-sectional study, and cohort study). The language is limited to English and Chinese. The data of the included study are extracted and the literature quality is evaluated by 2 researchers independently. The data are statistically analyzed by Stata 16.0 software. RESULTS: This study will use pulse wave velocity as an index to evaluate arteriosclerosis to explore the relationship between AT1R gene A1166C polymorphism and arteriosclerosis. CONCLUSION: This study will provide evidence-based medicine for elucidating the genetic tendency of arteriosclerosis. ETHICS AND DISSEMINATION: Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval will not be required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences. OSF REGISTRATION NUMBER: DOI 10.17605/OSF.IO/V6E2Y.


Subject(s)
Arteriosclerosis/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/genetics , Receptor, Angiotensin, Type 1/genetics , Humans , Meta-Analysis as Topic , Observational Studies as Topic , Research Design , Systematic Reviews as Topic
11.
Front Immunol ; 11: 528854, 2020.
Article in English | MEDLINE | ID: mdl-33193303

ABSTRACT

Interferon-chi (IFN-χ) is a type of function-unknown IFN. IFN-χ in bovines (BoIFN-χ) has evolved as a multigene family. This family comprises four IFN-χ subtypes, two of which are functional genes, which we demonstrated to (i) have antiviral and antiproliferative activities, (ii) be highly sensitive to trypsin, and (iii) remain stable with changes in pH and temperature. BoIFN-χ is a key intermediate in antiviral response, PAbs against BoIFN-χs could downregulate the transcriptional activation of ISGs induced by poly(I:C), and BoIFN-χs could be induced upon virus infection at the early and late phase. Additionally, BoIFN-χs bind with type-I IFN receptors, induce transcription of interferon regulatory factor 7 (IRF7), interferon-stimulated genes (ISGs), and type-I IFNs as well as myxovirus resistance protein 1 (Mx1) expression. Expression of ISGs and activation of IFN-stimulated response element (ISRE) induced with BoIFN-χs could be downregulated significantly by the Janus kinase (JAK) 1 and signal transducers and activators of transcription (STAT) 1 inhibitor. The promoters of BoIFN-ß, nuclear factor-kappa B, and ISRE could be activated with BoIFN-χs, and the BoIFN-χ promoter could be activated by other type-I IFNs. Overall, BoIFN-χ could be induced with virus infection and signal through the JAK-STAT pathway to form a positive-feedback regulation of IFN production. These findings may facilitate further research on the role of IFN-χ in innate immune responses.


Subject(s)
Feedback , Immunity, Innate , Interferon Type I/immunology , Signal Transduction/immunology , Animals , Cattle , Cricetinae , Dogs , Interferon Type I/genetics , Madin Darby Canine Kidney Cells , Signal Transduction/genetics
12.
Front Microbiol ; 10: 3040, 2019.
Article in English | MEDLINE | ID: mdl-31969874

ABSTRACT

The infected cell protein 0 (BICP0) is an immediate early protein encoded by BHV-1, and its RING finger domain, which endows BICP0 with intrinsic E3 ubiquitin ligase activity, is common in all ICP0 proteins. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is one of the TRAF family members and is ubiquitously expressed in mammalian tissues. TRAF6 forms the MyD88-TRAF6-IRF7 complex and activates interferon induction in the TLR (Toll-like receptors) and the RLR (RIG-I-like receptor) pathway. Previous studies showed that BICP0 reduced IFN-ß promoter activity by interacting with IRF7. In this study, we found that BICP0 promoted the K48-ubiquitination and degradation of TRAF6 through the ubiquitin proteasome system. The interaction between BICP0 and TRAF6 is a prerequisite for ubiquitination modification, and the 346-PAERQY-351 of BICP0 is indispensable. The motif mutation experiments showed that the tyrosine 351 of BICP0 is the key amino acid involved. Further studies demonstrated that BICP0 suppressed the NF-κB pathway via the interference of TRAF6. Moreover, degradation of TRAF6 protein influenced the K63-linked ubiquitination of IRF7 and activation of interferon promoter. Collectively, these findings indicate that the BICP0 protein suppresses the inflammation signaling and IFN production by K48-linked polyubiquitination of TRAF6 and may further clarify the immune evasion function of BICP0.

13.
Dev Comp Immunol ; 78: 91-99, 2018 01.
Article in English | MEDLINE | ID: mdl-28942155

ABSTRACT

The multigene family of rabbit IFN-α (RbIFN-α) is located on chromosome 1, which shows seven functional genes in type I IFN locus. A novel RbIFN-α that remains unlocated in the rabbit genome was amplified and designated as the first novel rabbit IFN-α (RbIFN-αNov1), which possesses the typical molecular characteristics of type I IFNs and could be induced in RK-13 cells and peripheral blood mononuclear cells. After the mature peptide of RbIFN-αNov1 was expressed, its antiviral activity, physicochemical characteristics, and cytotoxicity were determined in vitro. Results indicated that RbIFN-αNov1 exerted a high specific antiviral activity against VSV and a low cytotoxic effect on RK-13 cells. RbIFN-αNov1 showed high sensitivity to trypsin and remained relatively stable after acid, alkali, or heat treatment. RbIFN-αNov1 could induce Mx1 expression on RK-13 cells and activate the NF-κB, ISRE and BoIFN-ß promoter activities on bovine testicular cells. Overall, our research on RbIFN-αNov1 not only enriches the knowledge about rabbit IFNs but also makes RbIFN-αNov1 have the potential to be used as an effective therapeutic agent for rabbit viral diseases.


Subject(s)
Epithelial Cells/physiology , Interferon-alpha/genetics , Leukocytes, Mononuclear/physiology , Rhabdoviridae Infections/immunology , Vesicular stomatitis Indiana virus/immunology , Animals , Antiviral Agents/metabolism , Cell Line , Cell Survival , Cloning, Molecular , Epithelial Cells/virology , Gene Expression Regulation , Interferon-alpha/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Protein Stability , Rabbits , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...