Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38573593

ABSTRACT

Neointimal hyperplasia causes the failure of coronary artery bypass grafting (CABG). Our previous studies have found that endothelial dysfunction is one candidate for triggering neointimal hyperplasia, but which factors are involved in this process is unclear. Glutathione S-transferase α4 (GSTA4) play an important role in metabolizing 4-hydroxynonenal (4-HNE), a highly reactive lipid peroxidation product, which causes endothelial dysfunction or death. Here, we investigated the role of GSTA4 in neointima formation after arteriovenous grafts (AVGs) with or without high-fat diet (HFD). Compared with normal diet (ND), HFD caused endothelial dysfunction and increased neointima formation, concomitantly accompanied by downregulated expression of GSTA4 at the mRNA and protein levels. In vitro, overexpression of GSTA4 attenuated 4-HNE-induced endothelial dysfunction and knockdown of GSTA4 aggravated endothelial dysfunction. Furthermore, silencing GSTA4 expression facilitated the activation of 4-HNE induced endoplasmic reticulum stress (ERS) and inhibition of ERS pathway alleviated 4-HNE-induced endothelial dysfunction. Additionally, compared with wild-type (WT) mice, mice with knockout of endothelial-specific GSTA4 (GSTA4 EC KO) exhibited exacerbated vascular endothelial dysfunction and increased neointima formation caused by HFD. Together, these results demonstrate the critical role of GSTA4 in protecting the function of endothelial cells and in alleviating hyperlipidemia-induced vascular neointimal hyperplasia in arteriovenous grafts.

2.
Biomedicines ; 12(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672256

ABSTRACT

(1) Background: Sepsis-induced muscle atrophy is characterized by a loss of muscle mass and function which leads to decreased quality of life and worsens the long-term prognosis of patients. N-acetylcysteine (NAC) has powerful antioxidant and anti-inflammatory properties, and it relieves muscle wasting caused by several diseases, whereas its effect on sepsis-induced muscle atrophy has not been reported. The present study investigated the effect of NAC on sepsis-induced muscle atrophy and its possible mechanisms. (2) Methods: The effect of NAC on sepsis-induced muscle atrophy was assessed in vivo and in vitro using cecal ligation and puncture-operated (CLP) C57BL/6 mice and LPS-treated C2C12 myotubes. We used immunofluorescence staining to analyze changes in the cross-sectional area (CSA) of myofibers in mice and the myotube diameter of C2C12. Protein expressions were analyzed by Western blotting. (3) Results: In the septic mice, the atrophic response manifested as a reduction in skeletal muscle weight and myofiber cross-sectional area, which is mediated by muscle-specific ubiquitin ligases-muscle atrophy F-box (MAFbx)/Atrogin-1 and muscle ring finger 1 (MuRF1). NAC alleviated sepsis-induced skeletal muscle wasting and LPS-induced C2C12 myotube atrophy. Meanwhile, NAC inhibited the sepsis-induced activation of the endoplasmic reticulum (ER) stress signaling pathway. Furthermore, using 4-Phenylbutyric acid (4-PBA) to inhibit ER stress in LPS-treated C2C12 myotubes could partly abrogate the anti-muscle-atrophy effect of NAC. Finally, NAC alleviated myotube atrophy induced by the ER stress agonist Thapsigargin (Thap). (4) Conclusions: NAC can attenuate sepsis-induced muscle atrophy, which may be related to downregulating ER stress.

3.
Int Immunopharmacol ; 133: 112133, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38652962

ABSTRACT

There is an increasing tendency for sepsis patients to suffer from diaphragm atrophy as well as mortality. Therefore, reducing diaphragm atrophy could benefit sepsis patients' prognoses. Studies have shown that Anisodamine (Anis) can exert antioxidant effects when blows occur. However, the role of Anisodamine in diaphragm atrophy in sepsis patients has not been reported. Therefore, this study investigated the antioxidant effect of Anisodamine in sepsis-induced diaphragm atrophy and its mechanism. We used cecal ligation aspiration (CLP) to establish a mouse septic mode and stimulated the C2C12 myotube model with lipopolysaccharide (LPS). After treatment with Anisodamine, we measured the mice's bodyweight, diaphragm weight, fiber cross-sectional area and the diameter of C2C12 myotubes. The malondialdehyde (MDA) levels in the diaphragm were detected using the oxidative stress kit. The expression of MuRF1, Atrogin1 and JAK2/STAT3 signaling pathway components in the diaphragm and C2C12 myotubes was measured by RT-qPCR and Western blot. The mean fluorescence intensity of ROS in C2C12 myotubes was measured by flow cytometry. Meanwhile, we also measured the levels of Drp1 and Cytochrome C (Cyt-C) in vivo and in vitro by Western blot. Our study revealed that Anisodamine alleviated the reduction in diaphragmatic mass and the loss of diaphragmatic fiber cross-sectional area and attenuated the atrophy of the C2C12 myotubes by inhibiting the expression of E3 ubiquitin ligases. In addition, we observed that Anisodamine inhibited the JAK2/STAT3 signaling pathway and protects mitochondrial function. In conclusion, Anisodamine alleviates sepsis-induced diaphragm atrophy, and the mechanism may be related to inhibiting the JAK2/STAT3 signaling pathway.


Subject(s)
Diaphragm , Janus Kinase 2 , Muscular Atrophy , STAT3 Transcription Factor , Sepsis , Signal Transduction , Solanaceous Alkaloids , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Sepsis/drug therapy , Sepsis/complications , Solanaceous Alkaloids/therapeutic use , Solanaceous Alkaloids/pharmacology , Mice , Signal Transduction/drug effects , Diaphragm/drug effects , Diaphragm/pathology , Diaphragm/metabolism , Male , Cell Line , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Disease Models, Animal , Lipopolysaccharides , Mice, Inbred C57BL , Oxidative Stress/drug effects , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Antioxidants/pharmacology , Antioxidants/therapeutic use , Muscle Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/metabolism , Atrophy
4.
J Cell Physiol ; 238(3): 582-596, 2023 03.
Article in English | MEDLINE | ID: mdl-36791253

ABSTRACT

Endoplasmic reticulum (ER) stress is involved in skeletal muscle atrophy in various conditions, but the role of ER stress in sepsis-induced muscle atrophy is not well understood. In this study, we conducted experiments in wild-type (WT) mice and C/EBP homologous protein knockout (CHOP KO) mice to explore the role and mechanism of ER stress in sepsis-induced muscle atrophy. Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis. In WT mice, the body weight, muscle mass, and cross-sectional area of muscle fibers in CLP group both decreased significantly compared with sham group, which revealed that sepsis-induced dramatic muscle atrophy. Additionally, sepsis activated the ubiquitin-proteasome system (UPS), accompanied by the activation of ER stress. In vitro, inhibition of ER stress suppressed the activity of E3 ubiquitin ligases and alleviated the myotube atrophy. In vivo, CHOP KO also reduced the expression of E3 ubiquitin ligases and UPS-mediated protein degradation, and significantly attenuated sepsis-induced muscle atrophy. Deletion of CHOP also decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and Smad3, and inhibition of STAT3 and Smad3 partly reduced proteolysis caused by ER stress in vitro. These findings confirm that ER stress activates UPS-mediated proteolysis and promotes sepsis-induced muscle atrophy, which is partly achieved by activating STAT3 and Smad3.


Subject(s)
Endoplasmic Reticulum Stress , Muscular Atrophy , STAT3 Transcription Factor , Sepsis , Smad3 Protein , Animals , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Proteasome Endopeptidase Complex/metabolism , Sepsis/complications , Sepsis/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/metabolism , Smad3 Protein/antagonists & inhibitors , Smad3 Protein/metabolism , Disease Models, Animal , Ubiquitin/metabolism , Proteolysis , Phosphorylation
5.
Curr Med Sci ; 43(1): 115-122, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36640244

ABSTRACT

OBJECTIVE: Endothelial dysfunction is one candidate for triggering neointima formation after arteriovenous grafts (AVGs), but the factors mediating this process are unclear. The purpose of this study was to investigate the role of endoplasmic reticulum stress (ERS)-induced endothelial dysfunction in neointima formation following AVGs in high-fat diet (HFD) mice. METHODS: CCAAT-enhancer-binding protein-homologous protein (CHOP) knockout (KO) mice were created. Mice were fed with HFD to produce HFD model. AVGs model were applied in the groups of WT ND, WT HFD, and CHOP KO HFD. Human umbilical vein endothelial cells (HUVECs) were cultured with oxidized low density lipoprotein (ox-LDL) (40 mg/L) for the indicated time lengths (0, 6, 12, 24 h). ERS inhibitor tauroursodeoxycholic acid (TUDCA) was used to block ERS. Immunohistochemical staining was used to observe the changes of ICAM1. Changes of ERS were detected by real-time RT-PCR. Protein expression levels and ERS activation were detected by Western blotting. Endothellial cell function was determined by endothelial permeability assay and transendothelial migration assay. RESULTS: HFD increased neointima formation in AVGs associated with endothelial dysfunction. At the same time, ERS was increased in endothelial cells (ECs) after AVGs in mice consuming the HFD. In vitro, ox-LDL was found to stimulate ERS, increase the permeability of the EC monolayer, and cause endothelial dysfunction. Blocking ERS with TUDCA or CHOP siRNA reversed the EC dysfunction caused by ox-LDL. In vivo, knockout of CHOP (CHOP KO) protected the function of ECs and decreased neointima formation after AVGs in HFD mice. CONCLUSION: Inhibiting ERS in ECs could improve the function of AVGs.


Subject(s)
Diet, High-Fat , Neointima , Humans , Animals , Mice , Neointima/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Endoplasmic Reticulum Stress
6.
Int Immunopharmacol ; 115: 109640, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36586273

ABSTRACT

BACKGROUND: Muscle atrophy occurs in patients with sepsis and increases mortality and disability. Remission of muscle atrophy may improve the quality of life in patients with sepsis. Astragaloside IV (ASIV) has been shown to have excellent anti-inflammatory and anti-fibrotic effects and to reduce organ damage caused by sepsis. However, the effect of ASIV on sepsis-induced muscle atrophy has not been reported. Therefore, this study explored the pharmacological effects and mechanisms of ASIV in sepsis-induced muscle atrophy. METHODS: Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and lipopolysaccharide (LPS)-stimulated C2C12 myotubes. After administration of ASIV, the body weight, tibialis anterior (TA) and gastrocnemius muscle weight and fiber cross-sectional area of the mice were measured. The diameter of myotubes was observed by immunofluorescence staining. ELISA was used to assess inflammatory factors in plasma and cell culture supernatants. RT-PCR and Western blotting were used to detect the expression of MuRF1, Atrogin-1 and TGF-ß1/Smad signaling pathway components in TA and C2C12 myotubes. RESULTS: Our study found that ASIV reduced serum inflammatory factors and improved survival in septic mice. ASIV alleviated muscle mass reduction, myofiber cross-sectional area reduction, and C2C12 myotube atrophy by inhibiting the expression of the E3 ubiquitin ligases MuRF1 and atrogin-1. In addition, we observed that ASIV inhibited TGF-ß1/Smad signaling. Inhibition of the TGF-ß1/Smad signaling pathway partly blocked the anti-muscle atrophy effect of ASIV. CONCLUSION: ASIV can alleviate sepsis-induced muscle atrophy, which may be related to the inhibition of the TGF-ß1/Smad signaling pathway.


Subject(s)
Sepsis , Transforming Growth Factor beta1 , Mice , Animals , Quality of Life , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Signal Transduction , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism
7.
Opt Express ; 26(9): 12022-12037, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29716119

ABSTRACT

Ag-Ti composite nanorod structures with various Ag compositions were fabricated by the oblique angle co-deposition technique, and their optical transmission spectra are tuned by composition ratios of Ag and Ti, polarization directions, and deposition angles. Such tunable optical properties have potential applications in optoelectronics. Specially, for the Ag80 composite nanorod structures, there exists a wavelength, where it is isotropic. We also show that the transmission spectra of the Ag80 composite nanorod structure for the deposition angle of 87.5° are greater than 90%, while the transmission spectra for the 75° deposition angle are lower than 20%. Utilizing such a property, high or low transmission lenses can be designed.

8.
Opt Express ; 25(8): 9502-9510, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28437912

ABSTRACT

We report a plasmonic structure for switchable reflection and transmission by polarization. The structure is composed of a hexagonal-packed polystyrene sphere array with silver patches on them. Simulations and experiments demonstrated that the conversions between reflected beams and transmitted ones can be performed when the polarization directions of incident beams vary from 0° to 90°. A switchable reflection and transmission at a given wavelength can be obtained, as long as sizes of PS spheres and azimuthal angles are properly chosen. Such a patchy plasmonic structure serving as a switch between reflection and transmission have potential applications in photoelectric control devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...