Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters











Publication year range
2.
Biomater Adv ; 166: 214046, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39332345

ABSTRACT

Chemodynamic therapy (CDT) guided by Fenton chemistry and iron-containing materials can induce ferroptosis as a prospective cancer treatment method, but the inefficient Fe3+/Fe2+ conversion restricts the monotherapeutic performances. Here, an iron-based nanoplatform (Fe3O4-SRF@FeTA) including a magnetic core and a reductive film is developed for combined CDT and photothermal therapy (PTT) through ferroptosis augmentation. The inner iron oxide core serves as a photothermal transducer, a magnet-responsive module, and an iron reservoir for CDT. The coated Fe3+-tannic acid film (FeTA) provides extra iron and reductants for Fe3+/Fe2+ conversion acceleration, and functions as a door keeper for the pH- and light-responsive release of the embedded ferroptosis inducer sorafenib (SRF). The in vitro results demonstrate that the iron-based nanocomplexes promote the production of lipid peroxide through the amplified Fenton activity, and downregulate glutathione involved in lipid peroxide repair system through the responsively released SRF. Upon accumulation in tumor by magnetic targeting and sequential laser irradiation locoregionally, Fe3O4-SRF@FeTA nanocomplexes present prominent in vivo anticancer efficacy by leveraging PTT and CDT-enhanced ferroptosis.

3.
Mater Today Bio ; 28: 101180, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221216

ABSTRACT

Managing bone defects remains a formidable clinical hurdle, primarily attributed to the inadequate orchestration of vascular reconstruction and osteogenic differentiation in both spatial and temporal dimensions. This challenge persists due to the constrained availability of autogenous grafts and the limited regenerative capacity of allogeneic or synthetic bone substitutes, thus necessitating continual exploration and innovation in the realm of functional and bioactive bone graft materials. While synthetic scaffolds have emerged as promising carriers for bone grafts, their efficacy is curtailed by deficiencies in vascularization and osteoinductive potential. Nitric oxide (NO) plays a key role in revascularization and bone tissue regeneration, yet studies related to the use of NO for the treatment of bone defects remain scarce. Herein, we present a pioneering approach leveraging a photothermal-responsive system to augment NO release. This system comprises macromolecular mPEG-P nanoparticles encapsulating indocyanine green (ICG) (NO-NPs@ICG) and a mPEG-PA-PP injectable thermosensitive hydrogel carrier. By harnessing the synergistic photothermal effects of near-infrared radiation and ICG, the system achieves sustained NO release, thereby activating the soluble guanylate cyclase (SGC)-cyclic guanosine monophosphate (cGMP) signaling pathway both in vitro and in vivo. This orchestrated cascade culminates in the facilitation of angiogenesis and osteogenesis, thus expediting the reparative processes in bone defects. In a nutshell, the NO release-responsive system elucidated in this study presents a pioneering avenue for refining the bone tissue microenvironment and fostering enhanced bone regeneration.

4.
J Mater Chem B ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315761

ABSTRACT

Natural polymers and synthetic polymers have been extensively studied as scaffold materials, with the former offering advantages such as biocompatibility, biodegradability, and structural similarity to the natural extracellular matrix (ECM). However, the use of natural polymers in extrusion-based 3D printing has been limited by their poor mechanical properties and challenging rheological properties. In this study, gelatin and sodium alginate were utilized as scaffold materials, with the addition of Ca2+ and Mg2+ components to enhance their physical and chemical properties, and influence early cell behavior. Subsequently, these materials were fabricated into scaffolds using 3D printing. Our results demonstrated that the addition of Ca2+ and Mg2+ could improve the compactness of the 3D network structure, mechanical strength, swelling properties and degradation properties of methacrylated gelatin/methacrylated sodium alginate (GelMA/SAMA) composite hydrogel. In vitro cell tests revealed that the GelMA/SAMA composite hydrogel exhibited negligible cytotoxicity and promoted early cell viability, particularly with the higher concentration of Mg2+ in the material. Notably, the extrusion 3D printing process successfully produced GelMA/SAMA scaffolds. These results collectively indicate that GelMA/SAMA composite scaffolds hold promise as potential biomaterials for tissue engineering applications.

5.
J Nanobiotechnology ; 22(1): 407, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987801

ABSTRACT

Segmental bone defects, arising from factors such as trauma, tumor resection, and congenital malformations, present significant clinical challenges that often necessitate complex reconstruction strategies. Hydrogels loaded with multiple osteogenesis-promoting components have emerged as promising tools for bone defect repair. While the osteogenic potential of the Piezo1 agonist Yoda1 has been demonstrated previously, its hydrophobic nature poses challenges for effective loading onto hydrogel matrices.In this study, we address this challenge by employing Yoda1-pretreated bone marrow-derived mesenchymal stem cell (BMSCs) exosomes (Exo-Yoda1) alongside exosomes derived from BMSCs (Exo-MSC). Comparatively, Exo-Yoda1-treated BMSCs exhibited enhanced osteogenic capabilities compared to both control groups and Exo-MSC-treated counterparts. Notably, Exo-Yoda1-treated cells demonstrated similar functionality to Yoda1 itself. Transcriptome analysis revealed activation of osteogenesis-associated signaling pathways, indicating the potential transduction of Yoda1-mediated signals such as ErK, a finding validated in this study. Furthermore, we successfully integrated Exo-Yoda1 into gelatin methacryloyl (GelMA)/methacrylated sodium alginate (SAMA)/ß-tricalcium phosphate (ß-TCP) hydrogels. These Exo-Yoda1-loaded hydrogels demonstrated augmented osteogenesis in subcutaneous ectopic osteogenesis nude mice models and in rat skull bone defect model. In conclusion, our study introduces Exo-Yoda1-loaded GELMA/SAMA/ß-TCP hydrogels as a promising approach to promoting osteogenesis. This innovative strategy holds significant promise for future widespread clinical applications in the realm of bone defect reconstruction.


Subject(s)
Exosomes , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/drug effects , Animals , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Mice , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Rats , Male , Alginates/chemistry , Gelatin/chemistry , Cell Differentiation/drug effects , Bone Regeneration/drug effects , Cells, Cultured
6.
Carbohydr Polym ; 340: 122215, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38857996

ABSTRACT

The healing of diabetic wounds is significantly impeded due to severe oxidative stress and hindered angiogenesis, presenting a major challenge to clinical treatment. In this context, we introduces a novel hydrogel dressing strategy that uniquely combines α-lipoic acid-modified chitosan (LAMC) and melanin nanoparticles (MNPs). This innovative hydrogel, LAMC@MNPs, is formulated to gel under ultraviolet (UV) light without the need for a photoinitiator, simplifying the preparation process and potentially enhancing safety. Our experimental results demonstrate that the LAMC@MNPs hydrogel not only exhibits superior skin adhesion, with an average strength of 56.59 ± 3.16 KPa, but also effectively alleviates oxidative stress and accelerates vascular regeneration and wound healing. This is achieved by promoting cell migration and scavenging free radicals, addressing the critical barriers in diabetic wound care. The combination of these materials and their functional benefits presents a promising new approach to diabetic wound treatment.


Subject(s)
Chitosan , Diabetes Mellitus, Experimental , Hydrogels , Melanins , Thioctic Acid , Wound Healing , Wound Healing/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Thioctic Acid/chemistry , Thioctic Acid/pharmacology , Animals , Melanins/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Nanoparticles/chemistry , Mice , Oxidative Stress/drug effects , Male , Humans , Cell Movement/drug effects , Skin/drug effects , Rats , Rats, Sprague-Dawley
7.
Mater Horiz ; 11(15): 3528-3538, 2024 07 29.
Article in English | MEDLINE | ID: mdl-38916578

ABSTRACT

Predicting protein binding with the material surface still remains a challenge. Here, a novel approach, platypus dual perception neural network (Platyper), was developed to describe the interactions in protein-surface systems involving bioceramics with BMPs. The resulting model integrates a graph convolutional neural network (GCN) based on interatomic potentials with a convolutional neural network (CNN) model based on images of molecular structures. This dual-vision approach, inspired by the platypus's adaptive sensory system, addresses the challenge of accurately predicting the complex binding and unbinding dynamics in steered molecular dynamics (SMD) simulations. The model's effectiveness is demonstrated through its application in predicting surface interactions in protein-ligand systems. Notably, Platyper improves computational efficiency compared to classical SMD-based methods and overcomes the limitations of GNN-based methods for large-scale atomic simulations. The incorporation of heat maps enhances model's interpretability, providing valuable insights into its predictive capabilities. Overall, Platyper represents a promising advancement in the accurate and efficient prediction of protein-surface interactions in the context of bioceramics and growth factors.


Subject(s)
Molecular Dynamics Simulation , Neural Networks, Computer , Protein Binding , Biomimetics/methods , Ligands , Surface Properties , Proteins/chemistry , Proteins/metabolism
8.
Acta Biomater ; 182: 28-41, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38761961

ABSTRACT

The regenerative microenvironment after peripheral nerve injury is imbalanced and difficult to rebalance, which is mainly affected by inflammation, oxidative stress, and inadequate blood supply. The difficulty in remodeling the nerve regeneration microenvironment is the main reason for slow nerve regeneration. Traditional drug treatments have certain limitations, such as difficulty in penetrating the blood-nerve barrier and lack of pleiotropic effects. Therefore, there is an urgent need to build multifunctional nerve grafts that can effectively regulate the regenerative microenvironment and promote nerve regeneration. Nitric oxide (NO), a highly effective gas transmitter with diatomic radicals, is an important regulator of axonal growth and migration, synaptic plasticity, proliferation of neural precursor cells, and neuronal survival. Moreover, NO provides potential anti-inflammation, anti-oxidation, and blood vessel promotion applications. However, excess NO may cause cell death and neuroinflammatory cell damage. The prerequisite for NO treatment of peripheral nerve injury is that it is gradually released over time. In this study, we constructed an injectable NO slow-release system with two main components, including macromolecular NO donor nanoparticles (mPEG-P(MSNO-EG) nanoparticles, NO-NPs) and a carrier for the nanoparticles, mPEG-PA-PP injectable temperature-sensitive hydrogel. Due to the multiple physiological regulation of NO and better physiological barrier penetration, the conduit effectively regulates the inflammatory response and oxidative stress of damaged peripheral nerves, promotes nerve vascularization, and nerve regeneration and docking, accelerating the nerve regeneration process. STATEMENT OF SIGNIFICANCE: The slow regeneration speed of peripheral nerves is mainly due to the destruction of the regeneration microenvironment. Neural conduits with drug delivery capabilities have the potential to improve the microenvironment of nerve regeneration. However, traditional drugs are hindered by the blood nerve barrier and cannot effectively target the injured area. NO, an endogenous gas signaling molecule, can freely cross the blood nerve barrier and act on target cells. However, excessive NO can lead to cell apoptosis. In this study, a NO sustained-release system was constructed to regulate the microenvironment of nerve regeneration through various pathways and promote nerve regeneration.


Subject(s)
Delayed-Action Preparations , Nerve Regeneration , Nitric Oxide , Animals , Nitric Oxide/metabolism , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Nerve Regeneration/drug effects , Peripheral Nerve Injuries/drug therapy , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Rats, Sprague-Dawley , Rats , Peripheral Nerves/drug effects , Peripheral Nerves/pathology , Nanoparticles/chemistry , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/therapeutic use , Male , Hydrogels/chemistry , Sciatic Nerve/drug effects
9.
Acta Biomater ; 182: 111-125, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38763407

ABSTRACT

Bone cement is widely used in clinical with optimistic filling and mechanical properties. However, the setting time of bone cement is difficult to accurately control, and the existing bone cements exhibit limited therapeutic functionalities. In response to these challenges, we designed and synthesized Nd-doped whitlockite (Nd-WH), endowing bone cement with photothermal-responsive and fluorescence imaging capabilities. The doping amount and photothermal properties of Nd-doped whitlockite were studied, and the composite bone cement was prepared. The results showed that the setting time of bone cement could be regulated by near infrared irradiation, and the multiple functions of promoting osteogenic differentiation, antibacterial and anti-tumor could be realized by adjusting the power and irradiation time of near infrared. By incorporating Nd-doped whitlockite and bone cement, we developed an all-in-one strategy to achieve setting time control, enhanced osteogenic ability, tumor cell clearance, bacterial clearance, and bone tissue regeneration. The optimized physical and mechanical properties of composite bone cement ensure adaptability and plasticity. In vitro and in vivo experiments validated the effectiveness of this bone cement platform for bone repair, tumor cell clearance and bacterial clearance. The universal methods to regulate the setting time and function of bone cement by photothermal effect has potential in orthopedic surgery and is expected to be a breakthrough in the field of bone defect repair. Further research and clinical validation are needed to ensure its safety, efficacy and sustainability. STATEMENT OF SIGNIFICANCE: Bone cement is a valuable clinical material. However, the setting time of bone cement is difficult to control, and the therapeutic function of existing bone cement is limited. Various studies have shown that the bone repair capacity of bone cements can be enhanced by synergistic stimulatory effects in vivo and ex vivo. Unfortunately, most of the existing photothermal conversion materials are non-degradable and poorly biocompatible. This study provides a bone-like photothermal conversion material with photothermal response and fluorescence imaging properties, and constructed a platform for integrated regulation of the setting time of bone cement and diversification of its functions. Therefore, it helps to design multi-functional bone repair materials that are more convenient and effective in clinical operation.


Subject(s)
Bone Cements , Infrared Rays , Magnesium Compounds , Phosphates , Bone Cements/chemistry , Bone Cements/pharmacology , Animals , Phosphates/chemistry , Phosphates/pharmacology , Magnesium Compounds/chemistry , Magnesium Compounds/pharmacology , Bone Regeneration/drug effects , Mice , Osteogenesis/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
10.
J Mater Chem B ; 12(22): 5377-5390, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38716615

ABSTRACT

The healing of scalded wounds faces many challenges such as chronic inflammation, oxidative stress, wound infection, and difficulties in vascular and nerve regeneration. Treating a single problem cannot effectively coordinate the complex regenerative microenvironment of scalded wounds, limiting the healing and functional recovery of the skin. Therefore, there is a need to develop a multi-effect treatment plan that can adaptively address the issues at each stage of wound healing. In this study, we propose a scheme for on-demand release of hydrogen sulfide (H2S) based on the concentration of reactive oxygen species (ROS) in the wound microenvironment. This is achieved by encapsulating peroxythiocarbamate (PTCM) in the ROS-responsive polymer poly(ethylene glycol)-poly(L-methionine) (PMet) to form nanoparticles, which are loaded into a thermosensitive injectable hydrogel, F127-poly(L-aspartic acid-N-hydroxysuccinimide) (F127-P(Asp-NHS)), to create a scald dressing. The H2S released by the hydrogel dressing on demand regulates the wound microenvironment by alleviating infection, reducing oxidative stress, and remodeling inflammation, thereby accelerating the healing of full-thickness scalded wounds. This hydrogel dressing for the adaptive release of H2S has great potential in addressing complex scalded wounds associated with infection and chronic inflammation.


Subject(s)
Hydrogels , Hydrogen Sulfide , Wound Healing , Hydrogen Sulfide/chemistry , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Wound Healing/drug effects , Mice , Bandages , Delayed-Action Preparations/chemistry , Reactive Oxygen Species/metabolism , Injections , Polyethylene Glycols/chemistry , Particle Size , Male
11.
Bioact Mater ; 38: 181-194, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38711758

ABSTRACT

Chronic diabetic wounds are the most common complication for diabetic patients. Due to high oxidative stress levels affecting the entire healing process, treating diabetic wounds remains a challenge. Here, we present a strategy for continuously regulating oxidative stress microenvironment by the catalyst-like magnesium-gallate metal-organic framework (Mg-GA MOF) and developing sprayable hydrogel dressing with sodium alginate/chitosan quaternary ammonium salts to treat diabetic wounds. Chitosan quaternary ammonium salts with antibacterial properties can prevent bacterial infection. The continuous release of gallic acid (GA) effectively eliminates reactive oxygen species (ROS), reduces oxidative stress, and accelerates the polarization of M1-type macrophages to M2-type, shortening the transition between inflammation and proliferative phase and maintaining redox balance. Besides, magnesium ions adjuvant therapy promotes vascular regeneration and neuronal formation by activating the expression of vascular-associated genes. Sprayable hydrogel dressings with antibacterial, antioxidant, and inflammatory regulation rapidly repair diabetic wounds by promoting neurovascular network reconstruction and accelerating re-epithelialization and collagen deposition. This study confirms the feasibility of catalyst-like MOF-contained sprayable hydrogel to regulate the microenvironment continuously and provides guidance for developing the next generation of non-drug diabetes dressings.

12.
13.
Adv Healthc Mater ; 13(22): e2400770, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38626942

ABSTRACT

Metabolites, as markers of phenotype at the molecular level, can regulate the function of DNA, RNA, and proteins through chemical modifications or interactions with large molecules. Citrate is an important metabolite that affects macrophage polarization and osteoporotic bone function. Therefore, a better understanding of the precise effect of citrate on macrophage polarization may provide an effective alternative strategy to reverse osteoporotic bone metabolism. In this study, a citrate functional scaffold to control the metabolic pathway during macrophage polarization based on the metabolic differences between pro-inflammatory and anti-inflammatory phenotypes for maintaining bone homeostasis, is fabricated. Mechanistically, only outside M1 macrophages are accumulated high concentrations of citrate, in contrast, M2 macrophages consume massive citrate. Therefore, citrate-functionalized scaffolds exert more sensitive inhibitory effects on metabolic enzyme activity during M1 macrophage polarization than M2 macrophage polarization. Citrate can block glycolysis-related enzymes by occupying the binding-site and ensure sufficient metabolic flux in the TCA cycle, so as to turn the metabolism of macrophages to oxidative phosphorylation of M2 macrophage, largely maintaining bone homeostasis. These studies indicate that exogenous citrate can realize metabolic control of macrophage polarization for maintaining bone homeostasis in osteoporosis.


Subject(s)
Citric Acid , Homeostasis , Macrophages , Animals , Citric Acid/chemistry , Macrophages/metabolism , Macrophages/drug effects , Mice , Homeostasis/drug effects , RAW 264.7 Cells , Bone and Bones/metabolism , Bone and Bones/drug effects , Glycolysis/drug effects , Osteoporosis/metabolism , Osteoporosis/drug therapy , Tissue Scaffolds/chemistry
14.
J Control Release ; 370: 210-229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648955

ABSTRACT

Chronic skin wounds, especially infected ones, pose a significant clinical challenge due to their increasing incidence and poor outcomes. The deteriorative microenvironment in such wounds, characterized by reduced extracellular matrix, impaired angiogenesis, insufficient neurogenesis, and persistent bacterial infection, has prompted the exploration of novel therapeutic strategies. In this study, we developed an injectable multifunctional hydrogel (GEL/BG@Cu + Mg) incorporating Gelatin-Tannic acid/ N-hydroxysuccinimide functionalized polyethylene glycol and Bioactive glass doped with copper and magnesium ions to accelerate the healing of infected wounds. The GEL/BG@Cu + Mg hydrogel composite demonstrates good biocompatibility, degradability, and rapid formation of a protective barrier to stop bleeding. Synergistic bactericidal effects are achieved through the photothermal properties of BG@Cu + Mg and sustained copper ions release, with the latter further promoting angiogenesis. Furthermore, the hydrogel enhances neurogenesis by stimulating axons and Schwann cells in the wound bed through the beneficial effects of magnesium ions. Our results demonstrate that the designed novel multifunctional hydrogel holds tremendous promise for treating infected wounds and allowing regenerative neurogenesis at the wound site, which provides a viable alternative for further improving clinical outcomes.


Subject(s)
Anti-Bacterial Agents , Bandages , Copper , Hydrogels , Neurogenesis , Wound Healing , Animals , Neurogenesis/drug effects , Hydrogels/chemistry , Hydrogels/administration & dosage , Wound Healing/drug effects , Copper/chemistry , Copper/administration & dosage , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glass/chemistry , Magnesium/chemistry , Magnesium/administration & dosage , Male , Polyethylene Glycols/chemistry , Mice , Staphylococcus aureus/drug effects , Wound Infection/drug therapy , Rats, Sprague-Dawley , Gelatin/chemistry , Humans
15.
Regen Biomater ; 11: rbae024, 2024.
Article in English | MEDLINE | ID: mdl-38628546

ABSTRACT

Diabetic wounds are a difficult medical challenge. Excessive secretion of matrix metalloproteinase-9 (MMP-9) in diabetic wounds further degrades the extracellular matrix and growth factors and causes severe vascular damage, which seriously hinders diabetic wound healing. To solve these issues, a double-network porous hydrogel composed of poly (methyl methacrylate-co-acrylamide) (p(MMA-co-AM)) and polyvinyl alcohol (PVA) was constructed by the high internal phase emulsion (HIPE) technique for the delivery of potassium sucrose octasulfate (PSO), a drug that can inhibit MMPs, increase angiogenesis and improve microcirculation. The hydrogel possessed a typical polyHIPE hierarchical microstructure with interconnected porous morphologies, high porosity, high specific surface area, excellent mechanical properties and suitable swelling properties. Meanwhile, the p(MMA-co-AM)/PVA@PSO hydrogel showed high drug-loading performance and effective PSO release. In addition, both in vitro and in vivo studies showed that the p(MMA-co-AM)/PVA@PSO hydrogel had good biocompatibility and significantly accelerated diabetic wound healing by inhibiting excessive MMP-9 in diabetic wounds, increasing growth factor secretion, improving vascularization, increasing collagen deposition and promoting re-epithelialization. Therefore, this study provided a reliable therapeutic strategy for diabetic wound healing, some theoretical basis and new insights for the rational design and preparation of wound hydrogel dressings with high porosity, high drug-loading performance and excellent mechanical properties.

16.
Article in English | MEDLINE | ID: mdl-38623938

ABSTRACT

The periosteum, rich in neurovascular networks, bone progenitor cells, and stem cells, is vital for bone repair. Current artificial periosteal materials face challenges in mechanical strength, bacterial infection, and promoting osteogenic differentiation and angiogenesis. To address these issues, we adjusted the electrospinning ratio of poly-ε-caprolactone and chitosan and incorporated Zn doping whitlockite with polydopamine coating into a nanofiber membrane. After a series of characterizations, optimal results were achieved with a poly-ε-caprolactone: chitosan ratio of 8:1 and 5% nanoparticle content. In vitro cell experiments and in vivo calvarial defect models, the sustained release of Mg2+ and Ca2+ promoted vascularization and new bone formation, respectively, while the release of Zn2+ was conducive to antibacterial and cooperated with Mg2+ to promote neurovascularization. Consequently, this antibacterial bionic periosteum with an angiogenesis-neurogenesis coupling effect demonstrates a promising potential for bone repair applications.

17.
ACS Appl Mater Interfaces ; 16(13): 15687-15700, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511302

ABSTRACT

Polyethylene terephthalate (PET) artificial ligaments, renowned for their superior mechanical properties, have been extensively adopted in anterior cruciate ligament (ACL) reconstruction surgeries. However, the inherent bio-inertness of PET introduces formidable barriers to graft-bone integration, a critical aspect of rehabilitation. Previous interventions, ranging from surface roughening to chemical modifications, have aimed to address this challenge; however, consistently effective techniques for inducing graft-bone integration remain scarce. Our study employed advanced surface-coating methodologies to introduce strontium-doped hydroxyapatite (SrHA) onto PET ligaments. Detailed scanning electron microscopy (SEM) examinations revealed a uniform and integrative coating of SrHA on PET fibers. Furthermore, spectroscopic analysis confirmed the steady release of strontium ions from the coated surface under physiological conditions. In-depth cellular studies proved that extracellular strontium emanating from SrHA-coated PET (PET@SrHA) ligaments actively steers the M2 macrophage polarization. Additionally, macrophages (Mφs) manifested a heightened secretion of prohealing cytokines when exposed to PET@SrHA. Subsequent investigations showed that these cytokines acted as mediators, activating integrin signaling pathways among macrophages, vascular endothelial cells, and osteoblasts. As a direct consequence, an increased rate of angiogenesis and osteogenic differentiation was observed, vital for graft-bone integration following ACL reconstruction with PET@SrHA ligaments. From a biochemical standpoint, our results pinpoint strontium ions as influential immunomodulators, sculpting the graft-bone interface's immune environment. This insight presents the SrHA-coating technique as a viable therapeutic strategy, holding sound promise for improving angiogenesis and osseointegration outcomes during ACL reconstruction using PET-based grafts.


Subject(s)
Integrins , Osteogenesis , Cytokines , Angiogenesis , Endothelial Cells , Hydroxyapatites/chemistry , Strontium/pharmacology , Strontium/chemistry , Signal Transduction , Ions/pharmacology
18.
Adv Healthc Mater ; 13(19): e2400242, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38513263

ABSTRACT

Dynamic covalent bond hydrogels have demonstrated significant application potential in biomedical fields for their dynamic reversibility. However, the contradiction between the stability and dynamics of the hydrogel restricts its application. Here, utilizing silver sulfadiazine (AgSD) as a catalyst, hyaluronic acid-based hydrogels are constructed through imine bond crosslinking and incorporated disulfide bonds within the same crosslinking chain. It is found that AgSD can accelerate the formation of imine crosslinking bonds to improve the stability of hydrogels, thereby shortening the gelation time by ≈36.9 times, enhancing compression strength and adhesion strength by ≈2.4 times and 1.7 times, respectively, while inhibiting swelling and degradation rates to ≈2.1 times and 3.7 times. Besides, AgSD can coordinate with disulfide bonds to enhance the dynamics of hydrogel, enhancing the hydrogel self-healing efficiency by ≈2.3 times while reducing the relaxation time by ≈25.1 times. Significantly, AgSD imparts remarkable antibacterial properties to the hydrogel, thereby effectively facilitating the healing of bacterial infected wounds. Consequently, introducing AgSD enables hydrogels to possess concurrent stability, dynamics, and antibacterial properties. This strategy of regulating hydrogels by introducing AgSD provides a valuable reference for the application of dynamic covalent bonds.


Subject(s)
Anti-Bacterial Agents , Hyaluronic Acid , Hydrogels , Silver Sulfadiazine , Wound Healing , Hydrogels/chemistry , Hydrogels/pharmacology , Silver Sulfadiazine/chemistry , Silver Sulfadiazine/pharmacology , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Mice , Staphylococcus aureus/drug effects , Wound Infection/drug therapy
19.
J Mater Chem B ; 12(13): 3282-3291, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38487900

ABSTRACT

Sonodynamic therapy (SDT), an emerging cancer treatment with significant potential, offers the advantages of non-invasiveness and deep tissue penetrability. The method involves activating sonosensitizers with ultrasound to generate reactive oxygen species (ROS) capable of eradicating cancer cells, addressing the challenge faced by photodynamic therapy (PDT) where conventional light sources struggle to penetrate deep tissues, impacting treatment efficacy. This study addresses prevalent challenges in numerous nanodiagnostic and therapeutic agents, such as intricate synthesis, poor repeatability, low stability, and high cost, by introducing a streamlined one-step assembly method for nanoparticle preparation. Specifically, the sonosensitizer Chlorin e6 (Ce6) and the chemotherapy drug erlotinib are effortlessly combined and self-assembled under sonication, yielding carrier-free nanoparticles (EC-NPs) for non-small cell lung cancer (NSCLC) treatment. The resulting EC-NPs exhibit optimal drug loading capacity, a simplified preparation process, and robust stability both in vitro and in vivo, owing to their carrier-free characteristics. Under the synergistic treatment of sonodynamic therapy and chemotherapy, EC-NPs induce an excess of reactive oxygen in tumor tissue, prompting apoptosis of cancer cells and reducing their proliferative capacity. Both in vitro and in vivo experiments demonstrate superior therapeutic effects of EC-NPs under ultrasound conditions compared to free Ce6. In summary, our research findings highlight that the innovatively designed carrier-free sonosensitizer EC-NPs present a therapeutic option with commendable efficacy and minimal side effects.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Chlorophyllides , Lung Neoplasms , Nanoparticles , Photochemotherapy , Humans , Photochemotherapy/methods
20.
Biomacromolecules ; 25(3): 1509-1526, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38376392

ABSTRACT

The multifaceted process of nerve regeneration following damage remains a significant clinical issue, due to the lack of a favorable regenerative microenvironment and insufficient endogenous biochemical signaling. However, the current nerve grafts have limitations in functionality, as they require a greater capacity to effectively regulate the intricate microenvironment associated with nerve regeneration. In this regard, we proposed the construction of a functional artificial scaffold based on a "two-pronged" approach. The whole system was developed by encapsulating Tazarotene within nanomicelles formed through self-assembly of reactive oxygen species (ROS)-responsive amphiphilic triblock copolymer, all of which were further loaded into a thermosensitive injectable hydrogel. Notably, the hydrogel exhibits obvious temperature sensitivity at a concentration of 6 wt %, and the nanoparticles possess concentration-dependent H2O2-response capability with a controlled release profile in 48 h. The combined strategy promoted the repair of injured peripheral nerves, attributed to the dual role of the materials, which mainly involved providing structural support, modulating the immune microenvironment, and enhancing angiogenesis. Overall, this study opens up intriguing prospects in tissue engineering.


Subject(s)
Drug Delivery Systems , Hydrogen Peroxide , Hydrogen Peroxide/pharmacology , Tissue Engineering , Hydrogels/pharmacology , Hydrogels/chemistry , Peripheral Nerves/physiology , Nerve Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL