Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
Plant Phenomics ; 5: 0119, 2023.
Article in English | MEDLINE | ID: mdl-38026469

ABSTRACT

In this paper, a new pathway was proposed to assess the germplasm genetic variation by multidimensional traits of wheat seeds generated from digital images. A machine vision platform was first established to reconstruct wheat germplasm 3D model from omnidirectional image sequences of wheat seeds. Then, multidimensional traits were conducted from the wheat germplasm 3D model, including seed length, width, thickness, surface area, volume, maximum projection area, roundness, and 2 new defined traits called cardioid-derived area and the index of adjustment (J index). To assess genetic variation of wheat germplasm, phenotypic coefficients of variation (PCVs), analysis of variance (ANOVA), clustering, and the defined genetic variation factor (GVF) were calculated using the extracted morphological traits of 15 wheat accessions comprising 13 offspring and 2 parents. The measurement accuracy of 3D reconstruction model is demonstrated by the correlation coefficient (R) and root mean square errors (RMSEs). Results of PCVs among all the traits show importance of multidimensional traits, as seed volume (22.4%), cardioid-derived area (16.97%), and maximum projection area (14.67%). ANOVA shows a highly significance difference among all accessions. The results of GVF innovatively reflect the connection between genotypic variance and phenotypic traits from parents to offspring. Our results confirmed that extracting multidimensional traits from digital images is a promising high-throughput and cost-efficient pathway that can be included as a valuable approach in genetic variation assessment, and it can provide useful information for genetic improvement, preservation, and evaluation of wheat germplasm.

2.
Plant Physiol ; 180(3): 1660-1676, 2019 07.
Article in English | MEDLINE | ID: mdl-31079035

ABSTRACT

Partial root-zone irrigation (PRI), a water-saving technique, improves water uptake in hydrated roots by inducing specific responses that are thought to be regulated by signals originating from leaves; however, this signaling is poorly understood. Using a split-root system and polyethylene glycol 6000 to simulate PRI in cotton (Gossypium hirsutum), we showed that increased root hydraulic conductance (L) and water uptake in the hydrated roots may be due to the elevated expression of cotton plasma membrane intrinsic protein (PIP) genes. Jasmonate (jasmonic acid [JA] and jasmonic acid-isoleucine conjugate [JA-Ile]) content and the expression of three JA biosynthesis genes increased in the leaves of the PRI plants compared with those of the polyethylene glycol-free control. JA/JA-Ile content also increased in the hydrated roots, although the expression of the three JA genes was unaltered, compared with the control. The JA/JA-Ile contents in leaves increased after the foliar application of exogenous JA and was followed by an increase in both JA/JA-Ile content and L in the hydrated roots, whereas the silencing of the three JA genes had the opposite effect in the leaves. Ring-barking the hydrated hypocotyls increased the JA/JA-Ile content in the leaves but decreased the JA/JA-Ile content and L in the hydrated roots. These results suggested that the increased JA/JA-Ile in the hydrated roots was mostly transported from the leaves through the phloem, thus increasing L by increasing the expression of GhPIP in the hydrated roots under PRI. We believe that leaf-derived JA/JA-Ile, as a long-distance signal, positively mediates water uptake from the hydrated roots of cotton under PRI.


Subject(s)
Agricultural Irrigation/methods , Cyclopentanes/metabolism , Gossypium/metabolism , Oxylipins/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Water/metabolism , Biological Transport , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , Gossypium/genetics , Isoleucine/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics
3.
PLoS One ; 12(9): e0185075, 2017.
Article in English | MEDLINE | ID: mdl-28953908

ABSTRACT

Cotton is sensitive to waterlogging stress, which usually results in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in cotton remain elusive. Cotton was grown in a rain-shelter and subjected to 0 (control)-, 10-, 15- and 20-d waterlogging at flowering stage. The fourth-leaves on the main-stem from the top were sampled and immediately frozen in liquid nitrogen for physiological measurement. Global gene transcription in the leaves of 15-d waterlogged plants was analyzed by RNA-Seq. Seven hundred and ninety four genes were up-regulated and 1018 genes were down-regulated in waterlogged cotton leaves compared with non-waterlogged control. The differentially expressed genes were mainly related to photosynthesis, nitrogen metabolism, starch and sucrose metabolism, glycolysis and plant hormone signal transduction. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis indicated that most genes related to flavonoid biosynthesis, oxidative phosphorylation, amino acid metabolism and biosynthesis as well as circadian rhythm pathways were differently expressed. Waterlogging increased the expression of anaerobic fermentation related genes, such as alcohol dehydrogenase (ADH), but decreased the leaf chlorophyll concentration and photosynthesis by down-regulating the expression of photosynthesis related genes. Many genes related to plant hormones and transcription factors were differently expressed under waterlogging stress. Most of the ethylene related genes and ethylene-responsive factor-type transcription factors were up-regulated under water-logging stress, suggesting that ethylene may play key roles in the survival of cotton under waterlogging stress.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gossypium/genetics , Gossypium/physiology , Plant Leaves/genetics , Stress, Physiological/drug effects , Water/pharmacology , Carbohydrate Metabolism/drug effects , Carbon/metabolism , Down-Regulation/drug effects , Gossypium/drug effects , Gossypium/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Sequence Analysis, RNA , Solubility , Stress, Physiological/genetics
4.
Ying Yong Sheng Tai Xue Bao ; 24(12): 3453-8, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-24697064

ABSTRACT

Cotton (Gossypium hirsutum) was raised at different salinity levels (0, 0.15% and 0.30%) by irrigating with fresh- or sea-water. The effects of fertilization (N, NK, NP and NPK) on plant growth, nitrogen (N) uptake and N use efficiency were studied. The results showed that salinity and fertilization both affected the biomass, agronomic N use efficiency, N bioavailability and nitrogen accumulation of plants, and significant interaction was observed between the two factors. Fertilization could improve N use efficiency and nitrogen accumulation of plants under salinity stress, and significantly promoted the cotton yield. Among the fertilization treatments, N combined with P and K had the best effect. The benefit of fertilization was better under low salinity (0.15%) than under moderate salinity (0.3%).


Subject(s)
Fertilizers , Gossypium/growth & development , Nitrogen/chemistry , Salinity , Agricultural Irrigation , Biomass , Soil/chemistry , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL