Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37430544

ABSTRACT

Two-color laser field-induced plasma filaments are efficient broadband terahertz (THz) sources with intense THz waves emitted mainly in the forward direction, and they have been investigated intensively. However, investigations on the backward emission from such THz sources are rather rare. In this paper, we theoretically and experimentally investigate the backward THz wave radiation from a two-color laser field-induced plasma filament. In theory, a linear dipole array model predicts that the proportion of the backward emitted THz wave decreases with the length of the plasma filament. In our experiment, we obtain the typical waveform and spectrum of the backward THz radiation from a plasma with a length of about 5 mm. The dependence of the peak THz electric field on the pump laser pulse energy indicates that the THz generation processes of the forward and backward THz waves are essentially the same. As the laser pulse energy changes, there is a peak timing shift in the THz waveform, implying a plasma position change caused by the nonlinear-focusing effect. Our demonstration may find applications in THz imaging and remote sensing. This work also contributes to a better understanding of the THz emission process from two-color laser-induced plasma filaments.

2.
iScience ; 25(8): 104866, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35996583

ABSTRACT

Fast and efficient information processing and encryption, including writing, reading, and encryption memory, is essential for upcoming terahertz (THz) communications and information encryption. Here, we demonstrate a THz multi-level, nonvolatile, optically rewritable memory and encryption memory based on chalcogenide phase-change materials, Ge2Sb2Te5 (GST). By tuning the laser fluence irradiated on GST, we experimentally achieve multiple intermediate states and large-area amorphization with a diameter of centimeter-level in the THz regime. Our memory unit features a high operating speed of up to 4 ns, excellent reproducibility, and long-term stability. Utilizing this approach, hexadecimal coding information memories are implemented, and multiple writing-erasing tests are successfully carried out in the same active area. Finally, terahertz photoprint memory is demonstrated, verifying the feasibility of lithography-free devices. The demonstration suggests a practical way to protect and store information and paves a new avenue toward nonvolatile active THz devices.

3.
Opt Lett ; 47(5): 1206-1209, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230328

ABSTRACT

Quantum interference (QuI) effect is a powerful method to generate and control the ultrafast photocurrent in semiconductors. We utilize two-color pulsed light excitation in bismuth sulfide (Bi2S3) film to induce the photocurrent through the QuI effect. Experimentally, the photocurrent is indirectly monitored using a standard terahertz (THz) time-domain spectroscopic system. Due to the QuI, an asymmetric photon injection occurs in Bi2S3 film, resulting in coherent injection current and subsequently THz wave generation. Our results on the pump pulse energy dependence of the THz electric field suggests that the THz wave generation process follows the third-order nonlinear optical process.

4.
Opt Lett ; 47(22): 5969-5972, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-37219149

ABSTRACT

Liquids are proposed to be promising terahertz (THz) sources. However, the detected THz electric field is limited by the collection efficiency and saturation effect. A simplified simulation based on the interference of ponderomotive-force-induced dipoles indicates that, by reshaping the plasma, the THz radiation is concentrated in the collection direction. Experimentally, by using a cylindrical lens pair to form a line-shaped plasma in transverse section, the THz radiation is redirected, and the pump energy dependence follows a quadratic trend, indicating that the saturation effect is significantly weakened. As a result, the detected THz energy is enhanced by a factor of ∼5. This demonstration provides a simple but effective way of further scaling detectable THz signals from liquids.

5.
Opt Express ; 29(13): 20477-20486, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34266136

ABSTRACT

Understanding the process of terahertz (THz) wave generation from liquid water is crucial for further developing liquid THz sources. We present a systematic investigation of THz wave generated from laser-irradiated water lines. We show that water line in the diameter range of 0.1-0.2 mm generates the strongest THz wave, and THz frequency red shift is observed when diameter of the water line increases. The pump pulse energy dependence is decoupled from self-focusing effect by compensating the focal point displacement. As the pump pulse energy increases, saturation effect in THz peak electric field is observed, which can be mainly attributed to the intensity clamping effect inside the plasma and have never been reported previously, using water line or water film as the THz source. The proposed mechanism for saturation is supported by an independent measurement of laser pulse spectrum broadening. This work may help to further understand the laser-liquid interaction in THz generation process.

6.
Small ; 17(9): e1903663, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31729163

ABSTRACT

Bismuth ferrite (BiFeO3 ) has recently become interesting as a room-temperature multiferroic material, and a variety of prototype devices have been designed based on its thin films. A low-cost and simple processing technique for large-area and high-quality BiFeO3 thin films that is compatible with current semiconductor technologies is therefore urgently needed. Development of BiFeO3 thin films is summarized with a specific focus on the chemical solution route. By a systematic analysis of the recent progress in chemical-route-derived BiFeO3 thin films, the challenges of these films are highlighted. An all-solution chemical-solution deposition (AS-CSD) for BiFeO3 thin films with different orientation epitaxial on various oxide bottom electrodes is introduced and a comprehensive study of the growth, structure, and ferroelectric properties of these films is provided. A facile low-cost route to prepare large-area high-quality epitaxial BFO thin films with a comprehensive understanding of the film thickness, stoichiometry, crystal orientation, ferroelectric properties, and bottom electrode effects on evolutions of microstructures is provided. This work paves the way for the fabrication of devices based on BiFeO3 thin films.

7.
Nanoscale ; 12(2): 1144-1154, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31850436

ABSTRACT

MoS2 is a promising anode candidate for high-performance lithium-ion batteries (LIBs) due to its unique layered structure and high specific capacity. However, the poor conductivity and unsatisfactory structural stability limit its practical application. Recently, a new class of 2D materials, V4C3-Mxene, has been found to combine metallic conductivity, high structural stability and rich surface chemistries. Herein, a facile method has been developed to fabricate V4C3-MXene/MoS2/C nanohybrids. Ultrasmall and few-layered MoS2 nanosheets are uniformly anchored on the surface of V4C3-MXene with a thin carbon-coating layer. The ultrasmall and few-layered MoS2 nanosheets can enlarge the specific areas, reduce the diffusion distance of lithium ions, and accelerate the transfer of charge carriers. As a supporting substrate, V4C3-MXene endows the nanohybrid with high electrical conductivity, strong structural stability, and fast reaction kinetics. Moreover, the carbon-coating layer can further enhance the electrical conductivity and structural stability of the hybrid material. Benefiting from these advantages, the V4C3-MXene/MoS2/C electrode shows an excellent cycling stability with a high reversible capability of 622.6 mA h g-1 at 1 A g-1 after 450 cycles, and a superior rate capability of 500.0 mA h g-1 at 10 A g-1. Thus, the V4C3-MXene/MoS2/C nanohybrid could become a promising anode material for high rate LIBs.

8.
Small ; 15(14): e1805420, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30848553

ABSTRACT

1T phase MoS2 possesses higher conductivity than the 2H phase, which is a key parameter of electrochemical performance for lithium ion batteries (LIBs). Herein, a 1T-MoS2 /C hybrid is successfully synthesized through facile hydrothermal method with a proper glucose additive. The synthesized hybrid material is composed of smaller and fewer-layer 1T-MoS2 nanosheets covered by thin carbon layers with an enlarged interlayer spacing of 0.94 nm. When it is used as an anode material for LIBs, the enlarged interlayer spacing facilitates rapid intercalating and deintercalating of lithium ions and accommodates volume change during cycling. The high intrinsic conductivity of 1T-MoS2 also contributes to a faster transfer of lithium ions and electrons. Moreover, much smaller and fewer-layer nanosheets can shorten the diffusion path of lithium ions and accelerate reaction kinetics, leading to an improved electrochemical performance. It delivers a high initial capacity of 920.6 mAh g-1 at 1 A g-1 and the capacity can maintain 870 mAh g-1 even after 300 cycles, showing a superior cycling stability. The electrode presents a high rate performance as well with a reversible capacity of 600 mAh g-1 at 10 A g-1 . These results show that the 1T-MoS2 /C hybrid shows potential for use in high-performance lithium-ion batteries.

9.
ACS Nano ; 13(2): 1694-1702, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30649862

ABSTRACT

The phase-controlled synthesis of metallic and ambient-stable 2D MX2 (M is Mo or W; X is S) with 1T octahedral coordination will endow these materials with superior performance compared with their semiconducting 2H coordination counterparts. We report a clean and facile route to prepare 1T-MoS2 and 1T-WS2 through hydrothermal processing under high magnetic fields. We reveal that the as-synthesized 1T-MoS2 and 1T-WS2 are ambient-stable for more than 1 year. Electrochemical measurements show that 1T-MoS2 performs much better than 2H-MoS2 as the anode for sodium ion batteries. These results can provide a clean and facile method to prepare ambient-stable 1T-phase MX2.

10.
Chemistry ; 23(64): 16338-16345, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28850752

ABSTRACT

A series of Ca-doped lithium vanadates Li3-x Cax VO4 (x=0, 0.01, 0.03, and 0.05) are synthesized successfully through a simple sol-gel method. XRD patterns and energy-dispersive X-ray spectroscopy (EDS) mappings reveal that the doped Ca2+ ions enter into the lattice successfully and are distributed uniformly throughout the Li3 VO4 (LVO) grains. XRD spectra and SEM images show that Ca doping can lead to an enlarged lattice and refined Li3 VO4 particles. A small quantity of V ions will transfer from V5+ to V4+ in the Ca-doped samples, as demonstrated by the X-ray photoelectron spectroscopy (XPS) analysis, which leads to an increase of an order of magnitude in the electronic conductivity. Improved rate capability and cycling stability are observed for the Ca-doped samples, and Li2.97 Ca0.03 VO4 exhibits the best electrochemical performance among the studied materials. The initial charge/discharge capacities at 0.1 C increase from 480/645 to 527/702 mA h g-1 as x varies from 0 to 0.03. The charge capacity of Li2.97 Ca0.03 VO4 at 1 C retains 95.3 % of its initial value after 180 cycles, whereas the capacity retention is only 40 % for the pristine sample. Moreover, Li2.97 Ca0.03 VO4 maintains a high discharge capacity of 301.7 mA h g-1 at a high discharge rate (4 C), whereas the corresponding value is only 95.2 mA h g-1 for the pristine LVO sample. The enhanced cycling and rate performances are ascribed to the increased lithium ion diffusivity and electrical conductivity induced by Ca doping.

11.
Sci Rep ; 6: 19483, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26778474

ABSTRACT

La0.7Ca0.3MnO3 (LCMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] single crystal substrates have been prepared by high magnetic field assisted pulsed laser deposition (HMF-PLD) developed by ourselves. Uniformly sized and vertically aligned nanorod structures can be obtained under an applied high magnetic field above 5 T, and the dimension size of the nanorods can be manipulated by varying the applied magnetic field. It is found that the magnetic anisotropy is strongly correlated to the dimension size of the nanorods. A significantly enhanced low-field magnetoresistance (LFMR) of -36% under 0.5 T at 100 K can be obtained due to the enhanced carrier scattering at the vertical grain boundaries between the nanorods for the LCMO films. The growth mechanism of the nanorods has been also discussed, which can be attributed to the variation of deposition rate, adatom surface diffusion, and nucleation induced by the application of a high magnetic field in the film processing. The successful achievements of such vertical nanorod structures will provide an instructive route to investigate the physical nature of these nanostructures and achieve nanodevice manipulation.

12.
Rev Sci Instrum ; 86(9): 095105, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26429478

ABSTRACT

A high magnetic field assisted pulsed laser deposition (HMF-PLD) system has been developed to in situ grow thin films in a high magnetic field up to 10 T. In this system, a specially designed PLD cylindrical vacuum chamber is horizontally located in the bore configuration of a superconducting magnet with a bore diameter of 200 mm. To adjust the focused pulsed laser into the target in such a narrow PLD vacuum chamber, an ingeniously built-in laser leading-in chamber is employed, including a laser mirror with a reflection angle of 65° and a damage threshold up to 3.4 J/cm(2). A laser alignment system consisting of a built-in video-unit leading-in chamber and a low-energy alignment laser is applied to monitor and align the pulsed laser propagation in the PLD vacuum chamber. We have grown La0.7Sr0.3MnO3 (LSMO) thin films on (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) [LSAT (001)] substrates by HMF-PLD. The results show that the nanostructures of the LSMO films can be tuned from an epitaxially continuous film structure without field to a vertically aligned nanorod structure with an applied high magnetic field above 5 T, and the dimension size of the nanorods can be tuned by the strength of the magnetic field. The associated magnetic anisotropy is found to be highly dependent on the nanorod structures. We show how the HMF-PLD provides an effective route toward tuning the nanostructures and the physical properties of functional thin films, giving it an important role in development of nanodevices and their application.

13.
Opt Express ; 23(14): 17805-14, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26191842

ABSTRACT

Terahertz (THz) time domain spectroscopy (THz-TDS) of a CoCr2O4 single crystal has been performed under magnetic fields up to 8 Tesla. The magnetic field dependences of inter-sublattice exchange resonance at different temperatures have been investigated. Benefiting from the phase and polarization sensitive detection technique in THz-TDS, the circular absorption dichroism and Faraday ellipticity in the THz frequency region are observed and are found to be tunable by the external magnetic field. The complex indices of refraction are obtained under different magnetic field, which present distinct rotatory dispersions arising from the exchange magnetic resonance.

14.
Nanoscale ; 7(25): 10925-30, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26054306

ABSTRACT

A new strategy, namely a high magnetic field-induced method, has been designed to enhance lithium storage properties of MoS2 ultrathin nanosheets. The MoS2 ultrathin nanosheets obtained under 8 T exhibit improved cycling stability at high currents, better rate performance and reduced electrochemical impedance, compared to MoS2 ultrathin nanosheets obtained without a high magnetic field.

15.
Chem Commun (Camb) ; 50(68): 9697-9, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25017388

ABSTRACT

Transparent conducting p-type Bi2Sr2Co2O(y) thin films have been first grown on SrTiO3 substrates by a chemical solution deposition, showing c-axis self-orientation. The figure of merit can reach as high as 800 MΩ(-1), which is the highest value for p-type transparent conducting thin films by solution methods.

16.
Opt Lett ; 39(4): 777-80, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24562204

ABSTRACT

We experimentally demonstrated terahertz (THz) wave emission from thin metal (gold) films excited by asymmetrical optical fields synthesized using an in-line phase compensator. By driving the electrons in thin metal films asymmetrically, THz wave emission is observed at normal incidence of two-color pump beams. Coherent control of THz wave emission from metal films suggests that a mechanism similar to that of the air-plasma THz source excited by two-color laser fields can be used to describe the generation processes.

17.
Article in English | MEDLINE | ID: mdl-21721333

ABSTRACT

This study provides a facile method to map the microwave field distribution in a multimode microwave cavity. Anhydrous calcium sulfate powder was used to make the gypsum plates that were used as the carrying medium. Cobalt chloride hexahydrate, whose color changes when losing part or all of its crystal waters, was selected as an indicator of the energy absorption. The cobalt chloride aqueous solution at a concentration of 1.6% was absorbed by the dried gypsum plates. After introducing the plates into a microwave field, those areas that receive more microwave energy were preferably heated, resulting in the release of the moisture and consequently the loss of crystal water from the cobalt chloride hexahydrate. The color change on the plate formed a color map indicating the microwave field distribution. This method was used to investigate the energy distribution of a microwave oven by placing single or multiple plates in horizontal or vertical positions at different locations in the cavity.

18.
Phys Rev Lett ; 103(2): 023001, 2009 Jul 10.
Article in English | MEDLINE | ID: mdl-19659200

ABSTRACT

Electrons ionized from an atom or molecule by circularly or elliptically polarized femtosecond omega and 2omega pulses exhibit different trajectory orientations as the relative phase between the two pulses changes. Macroscopically, the polarization of the terahertz wave emitted during the ionization process was found to be coherently controllable through the optical phase. This new finding can be completely reproduced by numerical simulation and may enable fast terahertz wave modulation and coherent control of nonlinear responses excited by intense terahertz waves with controllable polarization.

19.
Article in English | MEDLINE | ID: mdl-18161415

ABSTRACT

Popcorn offers an environmentally friendly alternative to the commercial synthetic loose-fill packing materials. Popcorn could be used for cushioning purposes if the oil is extracted after the popping process. Conventional and microwave-assisted extraction methods were used for oil extraction from whole and ground, popped and unpopped kernels. The conventional extraction method achieved 68.5% oil recovery from whole popped kernels. However, whole unpopped kernels were not efficiently de-oiled with either of the methods. Extraction of oil from popped kernels is recommended; corn varieties with higher starch content and lower oil content should be used.


Subject(s)
Microwaves , Plant Oils/chemistry , Zea mays/chemistry
20.
Phys Rev Lett ; 97(10): 103903, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-17025819

ABSTRACT

We report the experimental results and theoretical analysis of broadband detection of terahertz (THz) waves via electric-field-induced second-harmonic generation in laser-induced air plasma with ultrashort laser pulses. By introducing the second-harmonic component of the white light in the laser-induced plasma as a local oscillator, coherent detection of broadband THz waves with ambient air is demonstrated for the first time. Our results show that, depending on the probe intensity, detection of THz waves in air can be categorized as incoherent, hybrid, and coherent detection. Coherent detection is achieved only when the tunnel ionization process dominates in gases.

SELECTION OF CITATIONS
SEARCH DETAIL
...