Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 606
Filter
2.
J Thorac Dis ; 16(4): 2379-2393, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738238

ABSTRACT

Background: Data regarding the safety and efficacy of delayed completion lobectomy (CL) following sublobar resections remain scant. We evaluated the technical difficulty and short-term outcomes of CL occurring at least 3 months following the anatomical segmentectomy or wedge resection. Methods: Consecutive non-small cell lung cancer (NSCLC) patients who underwent a second resection within the same lobe at least 3 months after their initial resection from January 2013 to December 2019 at the Shanghai Pulmonary Hospital were retrospectively included. The patients were divided into a segmentectomy group (SG group) and a wedge resection group (WR group) based on their initial resection strategy. Baseline characteristics and short-term outcomes after CL between the two groups were compared. Results: Twenty-five patients undergoing CL were included, nine in the SG group and 16 in the WR group. No deaths occurred within 30 days postoperatively, and the rate of overall postoperative complications was 28.0% (7/25). Statistically significant differences were found in rates of postoperative complications between the two groups (SG: 55.6% vs. WR: 12.5%, P=0.03) and in the use of bronchoplasty or angioplasty during the CL (SG: 33.3% vs. WR: 0.0%, P=0.04). After CL, no significant differences were found in 5-year recurrence-free survival (RFS) (WR: 66.7% vs. SG: 61.0%, P=0.31) or overall survival (OS) (WR: 93.8% vs. SG: 66.7%, P=0.06) between two groups. Conclusions: Delayed CL occurring over 3 months after sublobar resection is a safe and effective procedure, with no deaths occurring within 30 days postoperatively. As compared to a segmentectomy at the time of the index operation, a wedge resection may portend less morbidity, with a decreased risk of needing adjunctive bronchoplasty or angioplasty procedures during CL. After CL, 5-year RFS and OS were comparable between WR and SG groups.

3.
Int J Pharm ; 658: 124231, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38759741

ABSTRACT

Two frequent problems hindering clinical translation of nanomedicine are low drug loading and low colloidal stability. Previous efforts to achieve ultrahigh drug loading (>30 %) introduce new hurdles, including lower colloidal stability and others, for clinical translation. Herein, we report a new class of drug nano-carriers based on our recent finding in protein-nanoparticle co-assembly supraparticle (PNCAS), with both ultrahigh drug loading (58 % for doxorubicin, i.e., DOX) and ultrahigh colloidal stability (no significant change in hydrodynamic size after one year). We further show that our PNCAS-based drug nano-carrier possesses a built-in environment-responsive drug release feature: once in lysosomes, the loaded drug molecules are released instantly (<1 min) and completely (∼100 %). Our PNCAS-based drug delivery system is spontaneously formed by simple mixing of hydrophobic nanoparticles, albumin and drugs. Several issues related to industrial production are studied. The ultrahigh drug loading and stability of DOX-loaded PNCAS enabled the delivery of an exceptionally high dose of DOX into a mouse model of breast cancer, yielding high efficacy and no observed toxicity. With further developments, our PNCAS-based delivery systems could serve as a platform technology to meet the multiple requirements of clinical translation of nanomedicines.


Subject(s)
Doxorubicin , Drug Liberation , Lysosomes , Nanoparticles , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Animals , Nanoparticles/chemistry , Female , Drug Carriers/chemistry , Mice , Colloids/chemistry , Humans , Drug Delivery Systems , Mice, Inbred BALB C , Drug Stability , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Cell Line, Tumor , Breast Neoplasms/drug therapy
4.
Cancer Res Commun ; 4(5): 1351-1362, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38695555

ABSTRACT

Mucosal melanoma exhibits limited responsiveness to anti-PD-1 therapy. However, a subgroup of mucosal melanomas, particularly those situated at specific anatomic sites like primary malignant melanoma of the esophagus (PMME), display remarkable sensitivity to anti-PD-1 treatment. The underlying mechanisms driving this superior response and the DNA methylation patterns in mucosal melanoma have not been thoroughly investigated. We collected tumor samples from 50 patients with mucosal melanoma, including 31 PMME and 19 non-esophageal mucosal melanoma (NEMM). Targeted bisulfite sequencing was conducted to characterize the DNA methylation landscape of mucosal melanoma and explore the epigenetic profiling differences between PMME and NEMM. Bulk RNA sequencing and multiplex immunofluorescence staining were performed to confirm the impact of methylation on gene expression and immune microenvironment. Our analysis revealed distinct epigenetic signatures that distinguish mucosal melanomas of different origins. Notably, PMME exhibited distinct epigenetic profiling characterized by a global hypermethylation alteration compared with NEMM. The prognostic model based on the methylation scores of a 7-DMR panel could effectively predict the overall survival of patients with PMME and potentially serve as a prognostic factor. PMME displayed a substantial enrichment of immune-activating cells in contrast to NEMM. Furthermore, we observed hypermethylation of the TERT promoter in PMME, which correlated with heightened CD8+ T-cell infiltration, and patients with hypermethylated TERT were likely to have improved responses to immunotherapy. Our results indicated that PMME shows a distinct methylation landscape compared with NEMM, and the epigenetic status of TERT might be used to estimate prognosis and direct anti-PD-1 treatment for mucosal melanoma. SIGNIFICANCE: This study investigated the intricate epigenetic factor of mucosal melanomas contributed to the differential immune checkpoint inhibitor response, and found that PMME exhibited a global hypermethylation pattern and lower gene expression in comparison to NEMM. TERT hypermethylation may contribute to the favorable responses observed in patients with mucosal melanoma undergoing immunotherapy.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Melanoma , Humans , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Epigenesis, Genetic/genetics , DNA Methylation/genetics , Male , Female , Aged , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Mucous Membrane/immunology , Mucous Membrane/pathology , Middle Aged , Gene Expression Regulation, Neoplastic , Prognosis , Lymphocytes, Tumor-Infiltrating/immunology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Telomerase/genetics
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 273-278, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755723

ABSTRACT

OBJECTIVES: The repair of small and medium-sized defects in the oral has always been a challenge, free skin flap and distal pedicled tissue flaps are difficult to meet clinical needs, and the traditional under-chin flap has the risk of donor-area injury. This study aims to investigate the efficacy of V-shaped folded submental flap in the repair of small-sized and medium-sized oral defects. METHODS: The clinical data of 28 patients with oral defect lesions, who were hospitalized in the Department of Stomatology, Third Xiangya Hospital of Central South University from March 2019 to December 2022, were retrospectively analyzed. Patients were divided into a V-shaped folded group (17 cases) and a conventional group (11 cases) according to different surgical methods. The V-shaped folded group was treated with a V-shaped folded submental flap for postoperative soft tissue repair, while the conventional group was treated with a conventional submental flap for repair. The postoperative follow-up time was 6-48 months. The survival status, repair time, and repair effect of the 2 groups were compared. RESULTS: There was no significant difference in flap survival rate, flap size, flap preparation time, repair surgery time, and postoperative hospital stay between the 2 groups (all P>0.05). At 6 months after the surgery, the V-shaped folded group had no difficulty in raising the head or everting the lower lip, no "cat ear" deformity in the submental skin. Scars in the V-shaped folding group were hidden at the lower edge of the mandible. The wound aesthetics and functional scores in the V-shaped folded group were significantly higher than those in the conventional group (both P<0.05). CONCLUSIONS: The V-shaped foldable submental flap has the advantages of flexible design, simple preparation, reliable blood supply, and protection of the donor area, which can effectively protect the appearance of the chin and avoid functional disorders.


Subject(s)
Plastic Surgery Procedures , Surgical Flaps , Humans , Retrospective Studies , Plastic Surgery Procedures/methods , Male , Female , Middle Aged , Skin Transplantation/methods , Adult , Chin/surgery
6.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1526-1539, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621936

ABSTRACT

This study aims to investigate the component variations and spatial distribution of ginsenosides in Panax quinquefolium roots during repeated steaming and drying. Ultra performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to identify the ginsenosides in the root extract. Matrix-assisted laser desorption/ionization mass spectrometry imaging(MALDI-MSI) was employed to visualize the spatial distribution and spatiotemporal changes of prototype ginsenosides and metabolites in P. quinquefolium roots. The UPLC results showed that 90 ginsenosides were identified during the steaming process of the roots, and polar ginsenosides were converted into low polar or non-polar ginsenosides. The content of prototype ginsenosides decreased, while that of rare ginsenosides increased, which included 20(S/R)-ginsenoside Rg_3, 20(S/R)-ginsenoside Rh_2, and ginsenosides Rk_1, Rg_5, Rs_5, and Rs_4. MALDI-MSI results showed that ginsenosides were mainly distributed in the epidermis and phloem. As the steaming times increased, ginsenosides were transported to the xylem and medulla. This study provides fundamental information for revealing the changes of biological activity and pharmacological effect of P. quinquefolium roots that are caused by repeated steaming and drying and gives a reference for expanding the application scope of this herbal medicine.


Subject(s)
Ginsenosides , Panax , Ginsenosides/analysis , Tandem Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Panax/chemistry , Chromatography, High Pressure Liquid/methods , Plant Roots/chemistry
7.
Adv Mater ; : e2400870, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38615262

ABSTRACT

Advanced phosphate removal is critical for alleviating the serious and widespread aquatic eutrophication, strongly depending on the development of superior adsorption materials to overcome low chemical affinity and sluggish mass transfer at low phosphate concentrations. Herein, the first synthesis of monodispersed and organic amine modified lanthanum hydroxide nanocrystals (OA-La(OH)3) for advanced phosphate removal by modulating inner Helmholtz plane (IHP), is reported. These OA-La(OH)3 nanocrystals with positively charged surfaces and abundant exposed La sites exhibit specific affinity toward phosphate, delivering a maximum adsorption capacity of 168 mg P g⁻1 and a wide pH adaptability from 3.0 to 11.0, as well as a robust anti-interference performance, far surpassing those of documented phosphate removal materials. The superior phosphate removal performance of OA-La(OH)3 is attributed to its protonated organic amine in IHP, which enhances the electrostatic attraction around the adsorbent-solution interface. Impressively, OA-La(OH)3 can treat ≈5 000 and ≈3 200 bed volumes of simulated and real phosphate-containing wastewater to below extremely strict standard (0.1 mg L⁻1) in a fixed-bed adsorption mode, exhibiting great potential for advanced phosphate removal. This study offers a facile modification strategy to improve phosphate removal performance of nanoscale adsorbents, and sheds light on the structure-reactivity relationship of La-based materials.

8.
Article in English | MEDLINE | ID: mdl-38687849

ABSTRACT

Objective: The NLRP3 inflammasome plays a dual role in the occurrence and development of tumors, and its role in lung cancer remains unclear. This study aims to investigate the impact of NLRP3 inflammasome activation on the proliferation and migration of lung cancer cells. Methods: Data from the GEPIA, TCGA, and HPA databases were utilized to analyze the expression of NLRP3 in lung adenocarcinoma and its microenvironment. GO/KEGG enrichment analysis and GSEA analysis were employed to annotate the functions of differentially expressed genes related to NLRP3. The impact of NLRP3 inflammasome activation on the proliferation and migration of lung cancer cells was further investigated by CCK-8 assay and scratch assay. The effects of blocking NLRP3 inflammasome activation with IL-1RA and IL-18BP on the proliferation and migration of lung cancer cells were further assessed. Survival analysis was conducted to analyze the impact of NLRP3 expression on the prognosis of patients with lung adenocarcinoma. Results: The expression of NLRP3 in lung cancer was lower than in normal tissues, with notably higher expression observed in macrophages compared to other cells. Patients with higher NLRP3 expression exhibit increased infiltration of M2 macrophages. Activation of the NLRP3 inflammasome using LPS+ATP promotes the proliferation and migration of A549 cells. Simultaneous use of IL-1RA and IL-18BP reverses the promoting effect of NLRP3 inflammasome activation on cell proliferation and migration. Survival analysis results indicate that patients with high NLRP3 expression have a poorer prognosis compared to those with low NLRP3 expression (Hazzard Ratio =1.44; 95% Confidence Interval: 1.21-1.71). Conclusions: The activation of the NLRP3 inflammasome promotes the proliferation and migration of A549 cells through secretion of IL-1ß and IL-18, potentially influencing patient prognosis. Simultaneously blocking IL-1ß and IL-18 can reverse the pro-proliferative and migration-promoting effects.

9.
Int J Biol Macromol ; 267(Pt 1): 131428, 2024 May.
Article in English | MEDLINE | ID: mdl-38583834

ABSTRACT

Breast cancer is the second leading cause of cancer-related deaths among women worldwide. Despite significant advancements in chemotherapy, its effectiveness is often limited by poor drug distribution and systemic toxicity caused by the weak targeting ability of conventional therapeutic agents. The hypoxic tumor microenvironment (TME) also plays a vital role in treatment outcomes. Oral anticancer therapeutic agents have gained popularity and show promising results due to their ease of repeated administration. This study introduces autopilot biohybrids (Bif@BDC-NPs) for the effective delivery of doxorubicin (DOX) to the tumor site. This hybrid combines albumin-encapsulated DOX nanoparticles (BD-NPs) coated with chitosan (CS) for breast cancer chemotherapy, along with anaerobic Bifidobacterium infantis (B. infantis, Bif) serving as self-propelled motors. Due to Bif's specific anaerobic properties, Bif@BDC-NPs precisely anchor hypoxic regions of tumor tissue and significantly increase drug accumulation at the tumor site, thereby promoting tumor cell death. In an in-situ mouse breast cancer model, Bif@BDC-NPs achieved 94 % tumor inhibition, significantly prolonging the median survival of mice to 62 days, and reducing the toxic side effects of DOX. Therefore, the new bacteria-driven oral drug delivery system, Bif@BDC-NPs, overcomes multiple physiological barriers and holds great potential for the precise treatment of solid tumors.


Subject(s)
Breast Neoplasms , Chitosan , Doxorubicin , Nanoparticles , Chitosan/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Animals , Female , Nanoparticles/chemistry , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Administration, Oral , Humans , Drug Carriers/chemistry , Cell Line, Tumor , Tumor Microenvironment/drug effects , Drug Delivery Systems
10.
BMC Cancer ; 24(1): 396, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553708

ABSTRACT

BACKGROUND: Emerging data suggested a favorable outcome in advanced non-small cell lung cancer (NSCLC) with chronic obstructive pulmonary disease (COPD) patients treated by immunotherapy. The objective of this study was to investigate the effectiveness of neoadjuvant immunotherapy among NSCLC with COPD versus NSCLC without COPD and explore the potential mechanistic links. PATIENTS AND METHODS: Patients with NSCLC receiving neoadjuvant immunotherapy and surgery at Shanghai Pulmonary Hospital between November 2020 and January 2023 were reviewed. The assessment of neoadjuvant immunotherapy's effectiveness was conducted based on the major pathologic response (MPR). The gene expression profile was investigated by RNA sequencing data. Immune cell proportions were examined using flow cytometry. The association between gene expression, immune cells, and pathologic response was validated by immunohistochemistry and single-cell data. RESULTS: A total of 230 NSCLC patients who received neoadjuvant immunotherapy were analyzed, including 60 (26.1%) with COPD. Multivariate logistic regression demonstrated that COPD was a predictor for MPR after neoadjuvant immunotherapy [odds ratio (OR), 2.490; 95% confidence interval (CI), 1.295-4.912; P = 0.007]. NSCLC with COPD showed a down-regulation of HERV-H LTR-associating protein 2 (HHLA2), which was an immune checkpoint molecule, and the HHLA2low group demonstrated the enrichment of CD8+CD103+ tissue-resident memory T cells (TRM) compared to the HHLA2high group (11.9% vs. 4.2%, P = 0.013). Single-cell analysis revealed TRM enrichment in the MPR group. Similarly, NSCLC with COPD exhibited a higher proportion of CD8+CD103+TRM compared to NSCLC without COPD (11.9% vs. 4.6%, P = 0.040). CONCLUSIONS: The study identified NSCLC with COPD as a favorable lung cancer type for neoadjuvant immunotherapy, offering a new perspective on the multimodality treatment of this patient population. Down-regulated HHLA2 in NSCLC with COPD might improve the MPR rate to neoadjuvant immunotherapy owing to the enrichment of CD8+CD103+TRM. TRIAL REGISTRATION: Approval for the collection and utilization of clinical samples was granted by the Ethics Committee of Shanghai Pulmonary Hospital (Approval number: K23-228).


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/genetics , Neoadjuvant Therapy , China , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/therapy , Immunotherapy , Immunoglobulins
11.
Cancer Med ; 13(6): e7112, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509769

ABSTRACT

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD) experience worse clinical outcomes but respond better to immunotherapy than patients with NSCLC without COPD. Mucosal-associated invariant T (MAIT) cells, a versatile population of innate immune T lymphocytes, have a crucial function in the response to infection and tumors. This study investigated the distribution of MAIT cells in COPD-associated NSCLC and their involvement in the immune response. METHODS: Flow cytometry, immunohistochemistry, and immunofluorescence were performed on tissue samples of patients with NSCLC, with or without COPD, treated with or without anti-programmed death 1 (PD1) immunotherapy. MAIT cells were stimulated with 5-OP-RU using a mouse subcutaneous tumor model. RESULTS: Tumors contained significantly more MAIT cells than paraneoplastic tissues, and CD8+ MAIT cells accounted for more than 90% of these cells. Patients with NSCLC and COPD had higher CD8+ MAIT cell counts than those with NSCLC without COPD. Additionally, patients with NSCLC and COPD displayed reduced expression of the activation marker, CD69, and functional markers, granzyme B (GZMB) and interferon γ (IFNγ), and higher expression of the immune exhaustion marker, PD1. Among patients who received immunotherapy, the proportion with a complete or partial response was higher in those with COPD than in those without COPD. In patients with NSCLC and COPD, the major pathologic response (MPR) group had higher MAIT levels than those in the no major pathologic response (NPR) group. In the mouse subcutaneous tumor model stimulation of MAIT cells using 5-OP-RU enhanced the antitumor effects of anti-PD1. CONCLUSIONS: In patients with NSCLC and COPD, response to immunotherapy is associated with accumulation of CD8+ MAIT cells showing immune exhaustion. These findings may contribute to innovative approaches for immunotherapy targeting CD8+ MAIT cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mucosal-Associated Invariant T Cells , Pulmonary Disease, Chronic Obstructive , Ribitol/analogs & derivatives , Uracil/analogs & derivatives , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Mucosal-Associated Invariant T Cells/pathology , Lung Neoplasms/metabolism , Neoadjuvant Therapy , Biomarkers/metabolism , Pulmonary Disease, Chronic Obstructive/therapy , Immunotherapy
12.
J Am Chem Soc ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498303

ABSTRACT

The chlorine evolution reaction (CER) is essential for industrial Cl2 production but strongly relies on the use of dimensionally stable anode (DSA) with high-amount precious Ru/Ir oxide on a Ti substrate. For the purpose of sustainable development, precious metal decrement and performance improvement are highly desirable for the development of CER anodes. Herein, we demonstrate that surface titanium oxide amorphization is crucial to regulate the coordination environment of stabilized Ir single atoms for efficient and durable chlorine evolution of Ti monolithic anodes. Experimental and theoretical results revealed the formation of four-coordinated Ir1O4 and six-coordinated Ir1O6 sites on amorphous and crystalline titanium oxides, respectively. Interestingly, the Ir1O4 sites exhibited a superior CER performance, with a mass activity about 10 and 500 times those of the Ir1O6 counterpart and DSA, respectively. Moreover, the Ir1O4 anode displayed excellent durability for 200 h, far longer than that of its Ir1O6 counterpart (2 h). Mechanism studies showed that the unsaturated Ir in Ir1O4 was the active center for chlorine evolution, which was changed to the top-coordinated O in Ir1O6. This change of active sites greatly affected the adsorption energy of Cl species, thus accounting for their different CER activity. More importantly, the amorphous structure and restrained water dissociation of Ir1O4 synergistically prevent oxygen permeation across the Ti substrate, contributing to its long-term CER stability. This study sheds light on the importance of single-atom coordination structures in the reactivity of catalysts and offers a facile strategy to prepare highly active single-atom CER anodes via surface titanium oxide amorphization.

13.
Phytochem Anal ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500381

ABSTRACT

INTRODUCTION: Polygonum amplexicaule D. Don var. sinense Forb (PAF), a medicinal plant, has the effect of promoting blood circulation and removing blood stasis. However, the active compounds and targets of its anticoagulant effect are still unclear. OBJECTIVES: This study aims to establish an effective reversely thrombin-targeted screening method for anticoagulant active components in PAF by affinity ultrafiltration (AUF) coupled with ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS). METHODS: Different polar parts of PAF were screened for potential thrombin ligands by AUF-HPLC and identified by UPLC-Q-TOF-MS. After studying the affinity between ligands and thrombin by molecular docking, the antithrombotic activity of ligands was detected in vivo by zebrafish thrombus model, and in vitro by chromogenic substrate method. The mechanism of such ligands on thrombin was further studied by coagulation factor assay. RESULTS: Eleven potential thrombin ligands from PAF were screened by the AUF-UPLC-Q-TOF-MS method, and two compounds (butyl gallate and ß-sitosterol) with significant anticoagulant activity were discovered via in vitro and in vivo activity testing. CONCLUSION: A method system based on AUF-UPLC-Q-TOF-MS, molecular docking and in vivo and in vitro experiments also provided a powerful tool for further exploration of anticoagulant active components in PAF.

14.
Angew Chem Int Ed Engl ; 63(19): e202401386, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38488840

ABSTRACT

Efficient water dissociation to atomic hydrogen (H*) with restrained recombination of H* is crucial for improving the H* utilization for electrochemical dechlorination, but is currently limited by the lack of feasible electrodes. Herein, we developed a monolithic single-atom electrode with Co single atoms anchored on the inherent oxide layer of titanium foam (Co1-TiOx/Ti), which can efficiently dissociate water into H* and simultaneously inhibit the recombination of H*, by taking advantage of the single-atom reverse hydrogen spillover effect. Experimental and theoretical calculations demonstrated that H* could be rapidly generated on the oxide layer of titanium foam, and then overflowed to the adjacent Co single atom for the reductive dechlorination. Using chloramphenicol as a proof-of-concept verification, the resulting Co1-TiOx/Ti monolithic electrode exhibited an unprecedented performance with almost 100 % dechlorination at -1.0 V, far superior to that of traditional indirect reduction-driven commercial Pd/C (52 %) and direct reduction-driven Co1-N-C (44 %). Moreover, its dechlorination rate constant of 1.64 h-1 was 4.3 and 8.6 times more active than those of Pd/C (0.38 h-1) and Co1-N-C (0.19 h-1), respectively. Our research sheds light on the rational design of hydrogen spillover-related electrocatalysts to simultaneously improve the H* generation, transfer, and utilization for environmental and energy applications.

15.
Abdom Radiol (NY) ; 49(5): 1341-1350, 2024 05.
Article in English | MEDLINE | ID: mdl-38478038

ABSTRACT

RATIONALE AND OBJECTIVES: The study aimed to investigate whether dynamic contrast-enhanced MRI parameters and preoperative radiological features (DCER-Features) add value to the clinicopathologic model for predicting metachronous metastases in rectal cancer patients. MATERIALS AND METHODS: From January 2014 to December 2020, 859 patients in the PACS system were retrospectively screened. Of the initial 722 patients with surgically confirmed rectal cancer and no synchronous metastases, 579 patients were excluded for various reasons such as lack of clinicopathological or radiological information. 143 patients were finally included in this study. And 73 Patients of them developed metachronous metastasis within five years. After stepwise multiple regression analyses, we constructed three distinct models. Model 1 was developed solely based on clinicopathological factors, and model 2 incorporated clinicopathological characteristics along with DCE-MRI parameters. Finally, model 3 was built on all available factors, including clinicopathological characteristics, DCE-MRI parameters, and radiological features based on rectal magnetic resonance imaging. The radiological features assessed in this study encompass tumor imaging staging, location, and circumferential resection margin (CRM) for primary tumors, as well as the number of visible lymph nodes and suspected metastatic lymph nodes. Receiver operating characteristic (ROC) and decision curve analysis (DCA) were conducted to evaluate whether the diagnostic efficiency was improved. RESULTS: The performance of model 3 (including clinicopathologic characteristics and DCER-Features) was the best (AUC: 0.856, 95% CI 0.778-0.886), whereas it was 0.796 (95% CI 0.720-0.828) for model 2 and 0.709 (95% CI 0.612-0.778) for model 1 (DeLong test: model 1 vs model 2, p = 0.004; model 2 vs model 3, p = 0.037; model 1 vs model 3, p < 0.001). The decision curves indicated that the net benefit of model 3 was higher than the other two models at each referral threshold. The calibration plot of the three models revealed an excellent predictive accuracy. CONCLUSION: This study suggests that DCER-Features have added value for the clinicopathological model to predict metachronous metastasis in patients with rectal cancers.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Rectal Neoplasms , Humans , Rectal Neoplasms/pathology , Rectal Neoplasms/diagnostic imaging , Male , Female , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging/methods , Aged , Neoplasms, Second Primary/diagnostic imaging , Neoplasms, Second Primary/pathology , Predictive Value of Tests , Adult , Neoplasm Staging
17.
Pathol Oncol Res ; 30: 1611549, 2024.
Article in English | MEDLINE | ID: mdl-38379858

ABSTRACT

Glioblastoma is the most aggressive brain tumor with extremely poor prognosis in adults. Routine treatments include surgery, chemotherapy, and radiotherapy; however, these may lead to rapid relapse and development of therapy-resistant tumor. Glioblastoma cells are known to communicate with macrophages, microglia, endothelial cells, astrocytes, and immune cells in the tumor microenvironment (TME) to promote tumor preservation. It was recently demonstrated that Glioblastoma-derived extracellular vesicles (EVs) participate in bidirectional intercellular communication in the TME. Apart from promoting glioblastoma cell proliferation, migration, and angiogenesis, EVs and their cargos (primarily proteins and miRNAs) can act as biomarkers for tumor diagnosis and prognosis. Furthermore, they can be used as therapeutic tools. In this review, the mechanisms of Glioblastoma-EVs biogenesis and intercellular communication with TME have been summarized. Moreover, there is discussion surrounding EVs as novel diagnostic structures and therapeutic tools for glioblastoma. Finally, unclear questions that require future investigation have been reviewed.


Subject(s)
Extracellular Vesicles , Glioblastoma , MicroRNAs , Humans , Glioblastoma/pathology , Tumor Microenvironment , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , MicroRNAs/metabolism
18.
Dermatol Pract Concept ; 14(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38364395

ABSTRACT

INTRODUCTION: Pembrolizumab is well-tolerated in pediatric patients with advanced tumors, consistent with results in adults. However, information on the safety and efficacy of adjuvant pembrolizumab in children and adolescents with melanoma is lacking. OBJECTIVES: To compare pembrolizumab versus high-dose interferon-α2b (HDI) as adjuvant therapy in pediatric patients with melanoma. METHODS: We performed a retrospective study of pediatric patients diagnosed with melanoma between January 2008 and April 2022. Relapse-free survival (RFS) and the 1-year RFS rate were compared between patients receiving adjuvant pembrolizumab or HDI. RESULTS: Seventy-five pediatric patients with melanoma were screened from a database of 6,013 patients. Twenty-four patients were finally enrolled, of whom 9 received pembrolizumab and 15 received HDI as adjuvant therapy. By August 31, 2022, the median follow-up times were 23.6 months and 98.7 months in the pembrolizumab and HDI groups, respectively. There was no significant difference in median RFS between two groups (not reached versus 38.7 months, P = 0.11). The median overall survival was not reached in either group. The 1-year RFS rates were 88.9% and 66.7% in the pembrolizumab and HDI groups, respectively. All adverse events in the pembrolizumab group were grade 1 or 2, but grade 3-5 adverse events occurred in two (13%) patients receiving HDI. CONCLUSIONS: RFS was similar in pediatric patients with melanoma receiving adjuvant pembrolizumab or HDI, but pembrolizumab was associated with a reduced risk of recurrence and a more favorable safety profile. However, due to the small sample size and differences in follow-up time, larger and prospective studies are still warranted to explore better adjuvant therapies for pediatric melanoma.

19.
Eur J Cardiothorac Surg ; 65(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38341657

ABSTRACT

OBJECTIVES: Tracheoesophageal fistula (TEF) is characterized by abnormal connectivity between the posterior wall of the trachea or bronchus and the adjacent anterior wall of the oesophagus. Benign TEF can result in serious complications; however, there is currently no uniform standard to determine the appropriate surgical approach for repairing TEF. METHODS: The PubMed database was used to search English literature associated with TEF from 1975 to October 2023. We employed Boolean operators and relevant keywords: 'tracheoesophageal fistula', 'tracheal resection', 'fistula suture', 'fistula repair', 'fistula closure', 'flap', 'patch', 'bioabsorbable material', 'bioprosthetic material', 'acellular dermal matrix', 'AlloDerm', 'double patch', 'oesophageal exclusion', 'oesophageal diversion' to search literature. The evidence level of the literature was assessed based on the GRADE classification. RESULTS: Nutritional support, no severe pulmonary infection and weaning from mechanical ventilation were the 3 determinants for timing of operation. TEFs were classified into 3 levels: small TEF (<1 cm), moderate TEF (≥1 but <5 cm) and large TEF (≥5 cm). Fistula repair or tracheal segmental resection was used for the small TEF with normal tracheal status. If the anastomosis cannot be finished directly after tracheal segmental resection, special types of tracheal resection, such as slide tracheoplasty, oblique resection and reconstruction, and autologous tissue flaps were preferred depending upon the site and size of the fistula. Oesophageal exclusion was applicable to refractory TEF or patients with poor conditions. CONCLUSIONS: The review primarily summarizes the main surgical techniques employed to repair various acquired TEF, to provide references that may contribute to the treatment of TEF.


Subject(s)
Plastic Surgery Procedures , Tracheoesophageal Fistula , Humans , Tracheoesophageal Fistula/surgery , Tracheoesophageal Fistula/etiology , Trachea/surgery , Surgical Flaps/surgery
20.
Transl Lung Cancer Res ; 13(1): 16-33, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38405002

ABSTRACT

Background: Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) exhibited a higher propensity for lymph node metastasis (LNM). This study aimed to investigate risk factors of occult lymph node metastasis (OLNM) and recurrence in resectable ALK-rearranged NSCLC patients. Methods: This retrospective analysis included patients with ALK-rearranged NSCLC receiving lung resections at Shanghai Pulmonary Hospital from June 2016 to August 2021. Logistic regression analysis was used to ascertain predictors of OLNM, and Cox regression analysis to identify risk factors of recurrence. Results: A total of 603 resectable ALK-rearranged NSCLC patients were included. The mean age was 55 years old. There were 171 patients (28.4%) pathologically confirmed to have LNM, 51.5% of which were occult. Logistic regression analysis identified clinical tumor size and computed tomography (CT) density as independent factors for OLNM. Cox regression analysis showed that pleural invasion and pathological tumor size were independent prognosticators for recurrence in pathologically nodal negative patients. Among pathologically nodal positive patients, adjuvant ALK-tyrosine kinase inhibitors (TKI) showed a similar recurrence-free survival (RFS) to chemotherapy (hazard ratio, 0.454; 95% confidence interval, 0.111-1.864). Conclusions: Assessing the potential risk of OLNM is required for ALK-rearranged NSCLC patients with large tumors characterized by high CT densities. Patients with large pathological tumor size or pleural infiltration should be closely monitored despite being pathologically nodal negative. Additionally, adjuvant ALK-TKI may present a comparable RFS to chemotherapy in pathologically nodal positive patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...