Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 140: 213055, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35941053

ABSTRACT

Herein, we designed and fabricated a MXene@polydopamine (MXene@PDA)-decorated chitosan non-woven fabric (M-CNF) hemostatic dressing with super hydrophilic properties for wound repair and regeneration. The M-CNF exhibit excellently wettability characteristics which can rapidly absorb water from blood. Moreover, M-CNF with 15 mg/mL MXene@PDA (M-CNF-15) show better antibacterial performance, excellent blood-clotting performance, better blood cell and platelet adhesion ability than CNF, displaying both active and passive hemostatic mechanisms to accelerate blood clotting in mouse-liver injury model. In addition, the M-CNF-15 also shows better wound healed performance than Tegaderm™ film in a full-thickness skin defect model, and further demonstrating that the MXene@PDA can promote fibrinogen reformation the at the initial phases of the wound healing process. Therefore, this strategy for designing and manufacturing of multi-functional M-CNF wound dressing will have great potential for active local hemostasis and wound repair and regeneration.


Subject(s)
Chitosan , Hemostatics , Nanofibers , Animals , Bandages , Chitosan/pharmacology , Cost-Benefit Analysis , Indoles , Mice , Nanofibers/therapeutic use , Polymers , Wound Healing
2.
Int J Biol Macromol ; 209(Pt B): 2151-2164, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35500774

ABSTRACT

Herein, we designed and fabricated a biodegradable composite sponge which main component contained N, O-carboxymethyl chitosan (N,O-CS) and oxidized cellulose nanocrystals (TOCN) as a potential wound dressing for the prevention and treatment of postoperative adhesion. In order to improve antimicrobial properties of N,O-CS/TOCN composite sponges, natural antimicrobial agents (ε-Poly-l-Lysine,EPL) were successfully introduced and the EPL/N,O-CS/TOCN composite sponge exhibited excellent antibacterial properties and biological security. The EPL/N,O-CS/TOCN composite sponge can be degraded in vivo within 3 weeks. Finally, we analyzed the anti-adhesion performance of EPL/N,O-CS/TOCN composite sponge through a rat model of sidewall defect-cecum abrasion. These results demonstrated that EPL/N,O-CS/TOCN-treated group can effectively reduce the peritoneal adhesion formation than the commercial soluble gauze group and normal saline group, which mainly attribute to the excellent hemostatic function and tissue repair function of EPL/N,O-CS/TOCN composite sponge. It is believed that the EPL/N,O-CS/TOCN composite sponge will prove to be as a new medical device treat the internal tissue/organ repair and simultaneous prevention of postoperative adhesion.


Subject(s)
Cellulose, Oxidized , Chitosan , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bandages , Cellulose, Oxidized/pharmacology , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Polylysine/pharmacology , Rats , Tissue Adhesions/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...