Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Total Environ ; 926: 171614, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508276

ABSTRACT

The phosphate-modified biochar (BC) immobilizes cadmium (Cd), yet little is known about how phosphate species affect Cd detoxification in contaminated soils. We developed phosphate-modified biochar through the pyrolysis of wheat straw impregnated with three types of phosphate: mono­potassium phosphate (MKP), dipotassium hydrogen phosphate (DKP), and tripotassium phosphate (TKP). The Cd adsorption mechanism of modified biochar was investigated by biochar characterization, adsorption performance evaluation, and soil incubation tests. The results demonstrated that the efficiency of biochar in immobilizing Cd2+ followed the order: TKP-BC > DKP-BC > MKP-BC. The TKP-BC had the highest orthophosphate content, the fastest adsorption rate, and the largest adsorption capacity (Langmuir) of 257.28 mg/g, which is 6.31 times higher than that of the unmodified BC (CK). In contrast, pyrophosphate was predominant in MKP-BC and DKP-BC. The primary adsorption mechanism for Cd2+ was precipitation, followed by cation exchange, as evidenced by the formation of CdP minerals on the BC surface, and an increase of K+ in solution (compared to water-soluble K+) and a decrease of K+ in the biochar during adsorption. Desorption of Cd from the TKP-BC after adsorption was 9.77 %-12.39 % at a pH of 5-9, much lower than that of CK. The soil incubation test showed the diethylenetriaminepentaacetic acid extracted Cd of TKP-BC, MKP-BC, and DKP-BC was reduced by 67.93 %, 18.41 % and 31.30 % over CK, respectively. Using the planar optodes technique, we also found that TKP-BC had the longest effect enhancing in situ soil pH. This study provides a theoretical basis for developing heavy metal pollution control technology using green remediation materials and offers insights into the remediation mechanisms.


Subject(s)
Cadmium , Potassium Compounds , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Triticum/chemistry , Charcoal/chemistry , Phosphates , Soil Pollutants/analysis , Adsorption
2.
Environ Sci Pollut Res Int ; 30(33): 80070-80084, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37289388

ABSTRACT

Accurate identification of nitrate (NO3-) sources is the premise of non-point source pollution control in watersheds. The multiple isotope techniques (δ15N-NO3-, δ18O-NO3-, δ2H-H2O, δ18O-H2O), combined with hydrochemistry characteristics, land use information, and Bayesian stable isotope mixing model (MixSIAR), were used to identify the sources and contributions of NO3- in the agricultural watershed of the upper Zihe River, China. A total of 43 groundwater (GW) and 7 surface water (SFW) samples were collected. The results showed that NO3- concentrations of 30.23% GW samples exceeded the WHO maximum permissible limit level, whereas SFW samples did not exceed the standard. The NO3- content of GW varied significantly among different land uses. The averaged GW NO3- content in livestock farms (LF) was the highest, followed by vegetable plots (VP), kiwifruit orchards (KF), croplands (CL), and woodlands (WL). Nitrification was the main transformation process of nitrogen, while denitrification was not significant. Hydrochemical analysis results combined with NO isotopes biplot showed that manure and sewage (M&S), NH4+ fertilizers (NHF), and soil organic nitrogen (SON) were the mixed sources of NO3-. The MixSIAR model summarized that M&S was the main NO3- contributor for the entire watershed, SFW, and GW. For contribution rates of sources in GW of different land use patterns, the main contributor in KF was M&S (contributing 59.00% on average), while M&S (46.70%) and SON (33.50%) contributed significantly to NO3- in CL. Combined with the traceability results and the situation that land use patterns are changing from CL to KF in this area, improving fertilization patterns and increasing manure use efficiency are necessary to reduce NO3- input. These research results will serve as a theoretical foundation for controlling NO3- pollution in the watershed and adjusting agricultural planting structures.


Subject(s)
Groundwater , Water Pollutants, Chemical , Nitrates/analysis , Nitrogen Isotopes/analysis , Manure/analysis , Water/analysis , Bayes Theorem , Water Pollutants, Chemical/analysis , Nitrogen/analysis , Soil/chemistry , Sewage/analysis , Technology , Groundwater/chemistry , China , Environmental Monitoring/methods
3.
Ecotoxicol Environ Saf ; 249: 114403, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508785

ABSTRACT

Toxic metal-contaminated farmland from Cadmium (Cd) can enhance the accumulation of Cd and impair the absorption of mineral elements in brown rice. Although several studies have been conducted on Cd exposure on rice, little has been reported on the relationship between Cd and mineral elements in brown rice and the regulatory mechanism of rhizosphere microorganisms during element uptake. Thus, a field study was undertaken to screen japonica rice cultivars with low Cd and high mineral elements levels, analyze the quantitative relationship between Cd and seven mineral elements, and investigate the cultivar-specific response of rice rhizosphere bacterial communities to differences in Cd and mineral uptake in japonica rice. Results showed that Huaidao-9 and Xudao-7 had low Cd absorption and high amounts of mineral nutrient elements (Fe, Zn, Mg, and Ca, LCHM group), whereas Zhongdao-1 and Xinkedao-31 showed opposite accumulation characteristics (HCLM group). Stepwise regression analysis showed that zinc, iron, and potassium are the key minerals that affect Cd accumulation in japonica rice and zinc was the most important factor, accounting for 68.99 %. The accumulation of Cd and mineral elements is potentially associated with rhizosphere soil bacteria. Taxa enriched in the LCHM rhizosphere (phyla Acidobacteriota and MBNT15) indicated the high nutrient characteristics of the soil and reduced activity of Cd in soil. The HCLM rhizosphere was highly colonized by metal-activating bacteria (Actinobacteria), lignin-degrading bacteria (Actinobacteria and Chlorofexi), and bacteria scavenging nutrients and trace elements (Anaerolinea and Ketobacter). Moreover, the differences in the uptake of Cd and mineral elements affected predicted functions of microbial communities, including sulfur oxidation and sulfur derivative formation, human or plant pathogen, and functions related to the iron oxidation and nitrate reduction. The results indicate a potential association of Cd and mineral elements uptake and accumulation with rhizosphere bacteria in rice, thus providing theoretical basis and a new perspective on the maintenance of rice security and high quality simultaneously.


Subject(s)
Oryza , Soil Pollutants , Humans , Cadmium/toxicity , Cadmium/analysis , Rhizosphere , Iron/analysis , Minerals , Soil , Bacteria , Zinc/analysis , Sulfur , Soil Pollutants/toxicity , Soil Pollutants/analysis
4.
Sci Total Environ ; 838(Pt 3): 156484, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35667435

ABSTRACT

Microorganisms can modulate the contents of cadmium (Cd) and zinc (Zn) in wheat grains. Increasing the essential nutrient element Zn and decreasing the toxic element Cd in wheat grains can significantly improve human health. To characterize the specific bacterial communities associated with Cd and Zn accumulation in wheat, we conducted a field experiment by planting wheat cultivars differing in their capacity for Cd and Zn accumulation. The grain Cd contents in wheat cultivars YN23 (0.078 mg kg-1), JN17 (0.080 mg kg-1), YN836 (0.081 mg kg-1) and LM2 (0.091 mg kg-1) were significantly lower than those in ZM32 (0.16 mg kg-1). The Zn contents were significantly higher in the grains of JN17 (44.36 mg kg-1), LM2 (42.22 mg kg-1) and ZM32 (43.19 mg kg-1) than YN23 (27.05 mg kg-1) and YN836 (29.70 mg kg-1). On the basis of contents and bio-concentration factors of Cd and Zn in wheat grain, JN17 and LM2 were identified as low-Cd- and high-Zn-accumulating cultivars, YN23 and YN836 were low-Cd- and low-Zn-accumulating cultivars, and ZM23 was a high-Cd- and high-Zn-accumulating cultivar. The relative abundance values of Gemmatimonadaceae, Sphingomonadaceae and Beijerinckiaceae in the rhizospheres of low-Cd cultivars were significantly higher than those of high-Cd cultivars. High-Zn cultivars had higher abundance of Rhodanobacteraceae in the rhizosphere than did low-Zn cultivars. The low-Cd- and high-Zn-accumulating cultivars were enriched in Alphaproteobacteria and Gemmatimonadaceae, and strengthened nitrification function including aerobic_ammonia_oxidation and aerobic_nitrite_oxidation in the rhizosphere soil, thus contributing to the decreased Cd and increased Zn contents in wheat grains. Microbial technology is a promising method to control the contents of Cd and Zn in wheat grains.


Subject(s)
Cadmium , Soil Pollutants , Bacteria , Cadmium/analysis , Edible Grain/chemistry , Humans , Rhizosphere , Soil , Soil Pollutants/analysis , Triticum , Zinc/analysis
5.
PeerJ ; 10: e13274, 2022.
Article in English | MEDLINE | ID: mdl-35462766

ABSTRACT

Investigating the phosphorus (P) sources, pathways, and final sinks are important to reduce P pollution and improve P management. In this study, substance flow analysis (SFA) was performed for P flow analysis from 1995 to 2016 in different crops of Dongying District, a core region of the alluvial delta at the estuary of the Yellow River. The results showed that P input steadily increased from 1.48 × 104 t in 1995 to 2.16 × 104 t in 2007, and then decreased from 1.90 × 104 t in 2010 to 1.78 × 104 t in 2016. Chemical fertilizers made the highest contribution to P input. The cotton with the highest P load was on the top of P load risk ranks. More importantly, this study applied the Partial Least Squares Path Modeling (PLS-PM) model for P flow analysis and established the numerical relationship between the variables (including fertilizers, straws return-to-field, harvested grains, discarded straw, and P erosion and runoff), P use efficiency (PUE) and P load. The analysis revealed that fertilizer and crop production are the key factors affecting the PUE. Therefore, optimizing the use of P-fertilizer whilst maintaining yields can be an effective strategy to improve the local region PUE.


Subject(s)
Agriculture , Phosphorus , Agriculture/methods , Phosphorus/analysis , Fertilizers/analysis , Crop Production/methods , China , Crops, Agricultural/metabolism
6.
Environ Sci Pollut Res Int ; 29(28): 42884-42898, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35092584

ABSTRACT

The cadmium (Cd) and micronutrient contents in grains were used as screening indicators through a pot experiment, and the hierarchical cluster analysis was used to select wheat cultivars with low Cd and high micronutrient contents. The potential human health risks caused by wheat intake and the relationship between the Cd concentration in wheat grains and 12 agronomic traits were also investigated using the risk assessment model and logistic equation fitting, respectively. Yannong-23, Zhongmmai-175, and Luyuan-502, the main wheat cultivars promoted in the Huang-Huai-Hai region of China, were screened for low Cd accumulation and high micronutrient. Health risk assessment results demonstrated that children showed a high noncarcinogenic risk and that adults posed a high carcinogenic risk. The results of the agronomic trait analysis showed that low-Cd accumulation wheat cultivars had high spikelet number and fresh and dry weights of root, stem, and leaf (p < 0.05). Logistic curve fitting results showed that among all agronomic traits, the root dry weight was the most suitable factor with remarkable goodness of fit and showed a significant negative correlation. The Cd concentration in wheat grains could be predicted by the logistic curve equation obtained by fitting this trait. Results provided theoretical support for the safe use of slightly to moderately contaminated farmland, formulation of health risk management policies for different populations, and breeding of high-quality wheat.


Subject(s)
Soil Pollutants , Trace Elements , Adult , Cadmium/analysis , Child , Edible Grain/chemistry , Humans , Micronutrients/analysis , Plant Breeding , Soil , Soil Pollutants/analysis , Trace Elements/analysis , Triticum
7.
Environ Sci Pollut Res Int ; 28(18): 23036-23047, 2021 May.
Article in English | MEDLINE | ID: mdl-33438124

ABSTRACT

Irrational application of chemical fertilizers causes soil nutrient imbalance, reduced microbial diversity, soil diseases, and other soil quality problems and is one of the main sources of non-point pollution. The application of microbial inoculant (MI) can improve the soil environment and crop growth to reduce problems caused by irrational application of chemical fertilizers. Field experiments were carried out in high-phosphorus soils to study the effects of the addition of various MIs combined with chemical fertilizers on soil properties, wheat growth, and soil microbial composition and structure. The MIs consisted of one fungal agent: Trichoderma compound agent (TC) and five bacterial agents, namely soil remediation agent (SR), anti-repeat microbial agent (AM), microbial agent (MA), plant growth-promoting rhizobacteria (PG), and biological fertilizer agent (BF). The wheat yield increased by 15.2-33.4% with the addition of MIs, and PG with Bacillus subtilis as the core microorganism had the most obvious effect on increasing the production (p < 0.05). For the entire growth period of wheat, all MIs applied significantly increased the available nitrogen (AN) (p < 0.05) but did not significantly affect the available phosphorus (AP). BF has the best effect on increasing AN in the soil. The 16S rRNA sequencing results indicated that the dominant phyla of soil bacteria were Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The addition of MIs increased the relative abundance of Acidobacteria, Actinobacteria, Chloroflexi and decreased Proteobacteria and Bacteroidetes. The diversity of soil bacterial community (Chao1) was significantly higher in the soil added with TC than that added with BF (p < 0.05). All bacterial agents significantly enriched various genera (p < 0.05), while the fungal agent (TC) did not enrich the genera significantly. pH and AN, but not TP, were closely related to the dominant bacteria phylum in high-P soil. The application of MIs improved AN in soil, increased the wheat yield, and changed the relative abundance of the soil dominant phylum, and these changes were closely related to the type of MIs. The results provide a scientific basis for rational use of different types of MIs in high-P soil.


Subject(s)
Agricultural Inoculants , Microbiota , Fertilizers/analysis , Nitrogen/analysis , Phosphorus , RNA, Ribosomal, 16S , Soil , Soil Microbiology , Triticum
8.
Microorganisms ; 8(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192120

ABSTRACT

The Yellow River Delta (YRD) region is an important production base in Shandong Province. It encompasses an array of diversified crop systems, including the corn-wheat rotation system (Wheat-Corn), soybean-corn rotation system (Soybean-Corn), fruits or vegetables system (Fruit), cotton system (Cotton) and rice system (Rice). In this study, the communities of ammonia oxidizer-, denitrifier- and nitrogen (N)-fixing bacteria in those cropping systems were investigated by Illumina Miseq sequencing. We found that Rice soil exhibited significantly higher diversity indices of investigated N-cycling microbial communities than other crop soils, possibly due to its high soil water content. Wheat-Corn soils had higher abundances of nitrification gene amoA and denitrification genes nirK and nirS, and exhibited higher soil potential nitrification rate (PNR), compared with Soybean-Corn, Cotton and Fruit soils. Consistently, redundancy analysis (RDA) showed that soil water content (SWC), electrical conductivity (EC), and total nitrogen (TN) were the most important influencing factors of the diversity and structure of the investigated N-cycling microbial.

9.
Chemosphere ; 241: 125065, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31622886

ABSTRACT

Heavy metal-contaminated farmland, especially for cadmium (Cd), is being used for agricultural production in large scale due to the increasing food demand. Thus, minimizing the influx of Cd to the human food chain is urgently needed. Screening for stably low Cd and moderately high micronutrient wheat cultivars is one of the most feasible and effective approaches to ensure food safety and quality. Here, the Cd accumulation by 72 wheat cultivars was identified in field 1, and the stability of Cd accumulation in these cultivars was tested in fields 2 and 3. The effects of Cd on micronutrient (zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B)) uptake in grains were also investigated. Nine of the 24 low-Cd wheat cultivars identified by screening showed stably low-Cd and moderately high micronutrient concentrations in grain. Nine cultivars exhibited unstable low-Cd accumulation characteristics, and another five cultivars contained significantly lower Zn concentrations in grain in at least two experimental fields. One low-Cd cultivar also had low Zn, Cu and Mn concentrations in grain. The accumulation of Cd in wheat grain had little effects on the uptake of Fe. Grain Cd concentration correlated positively with the dry weight of stem and root, and negatively with the spike length. There was no correlation between grain Cd concentration and wheat yield. The selected cultivars with stably low-Cd accumulation and moderately high micronutrient concentrations in grain are recommended for cultivation in slightly to moderately Cd-contaminated farmland to ensure food safety for the growing human population.


Subject(s)
Cadmium/analysis , Soil Pollutants/analysis , Triticum/chemistry , Agriculture , China , Copper , Edible Grain/chemistry , Environmental Monitoring , Humans , Iron , Manganese , Metals, Heavy , Micronutrients , Soil , Zinc/analysis
10.
Huan Jing Ke Xue ; 40(8): 3738-3745, 2019 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-31854783

ABSTRACT

In order to investigate the effect of biochar on NH3 volatilization in saline-alkali soils of the Yellow River Delta, continuous laboratory incubation was conducted. Firstly, the recovery rate of NH3 volatilization by an improved aeration method was determined, the effects of fertilizer particles and aqueous fertilizer solution on NH3 volatilization were then compared. Finally, the effects of biochar species, application amount, and fertilizer type on NH3 volatilization rate and total amount were explored. The results showed that the average recovery rate of NH3 reached 100.30% using ammonium sulfate as the nitrogen source. With the same rate of nitrogen application, the volatilization of NH3 decreased by 60.29% in the treatment with urea as the aqueous solution compared to the treatment with urea particles, and decreased by 61.40% in the treatment with an ammonium sulfate aqueous solution compared to the treatment with ammonium sulfate particles. Compared with the control treatment (without the addition of biochar and with the addition of ammonium sulfate solution), the addition of 0.5% biochar derived from 300℃ rice biochar (RB-300), 600℃ rice biochar (RB-600), 300℃ cotton biochar (CB-300), and 600℃ cotton biochar (CB-600) reduced the total volatilization of NH3 by 18.68%, 16.16%, 9.35%, and 8.26% respectively. The volatilization rate of NH3 was at its highest within two days of fertilization, which accounted for 53.80%-64.02% of the total volatilization. After the addition of the biochar, volatilization of NH3 decreased at first and then increased in proportion to an increase in biochar content. Therefore, adding a small amount of biochar before field fertilization, combined with the integrated management of water and fertilizer, can effectively reduce NH3 volatilization and improve nitrogen use efficiency.

11.
Sci Total Environ ; 668: 245-253, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-30852201

ABSTRACT

The excessive consumption of fuels associated with rapid industrialization, urbanization, and modernization has caused serious smog events in many Chinese cities. Vehicle exhaust is one of the primary causes of smog events due to the rapid growth of motor vehicle ownership and increased fuel consumption. In this study, fault tree analysis (FTA) was used as a relatively simple but effective way to analyze the causes of smog associated with vehicle exhaust emissions in Jinan, China. First, after the identification of the top event, intermediate events, and basic events, a comprehensive fault tree system for urban smog associated with vehicle exhaust emissions was constructed. Then, during the qualitative analysis stage, minimal cut sets (MCSs) were grouped using Boolean algebra operations, and the original fault tree was simplified to an equivalent tree based on 6 MCSs. Finally, during the quantitative analysis stage, the effects of the 12 basic events on the top event were evaluated and ranked according to the structural importance, probabilistic importance, and critical importance of their analytical measures. Our results indicated that traffic congestion, superabundance of vehicles, poor supervision, and yellow-label vehicles with long use ages had the greatest impact on smog events, with importance degrees of 0.52930, 0.52920, 0.22719, and 0.22716, respectively. These results are consistent with common sense. Although different basic events exert different influences, all of the basic events should be comprehensively taken into consideration and corresponding precautionary measures developed. This research provides a good case study of the application of FTA in the analysis of the causes of urban smog events associated with vehicle exhaust emissions. Our study further demonstrates that FTA is a relatively simple but effective method for the causal analysis of smog, as well as an effective tool for environmental risk management.

12.
Environ Sci Pollut Res Int ; 26(10): 10343-10353, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30761486

ABSTRACT

Phytoremediation combined with amendments and stabilization technologies are two crucial methods to deal with soil contaminated with heavy metals. Copper (Cu) contamination in soil near Cu mines poses a serious threat to ecosystems and human health. This study investigated the effect of ethylenediaminetetraacetic acid (EDTA) and biochar (BC) on the accumulation and subcellular distribution of Cu in Amaranthus retroflexus L. to demonstrate the remediation mechanism of EDTA and BC at the cellular level. The role of calcium (Ca) in response to Cu stress in A. retroflexus was also elucidated. We designed a pot experiment with a randomized block of four Cu levels (0, 100, 200, 400 mg kg-1) and three treatments (control, amendment with EDTA, and amendment with BC). The subcellular components were divided into three parts (cell walls, organelles, and soluble fraction) by differential centrifugation. The results showed that EDTA amendment significantly increased (p < 0.05) the concentrations of Cu in root cell walls and all subcellular components of stems and leaves (cell walls, organelles, and the soluble fraction). EDTA amendment significantly increased (p < 0.05) the proportion of exchangeable fraction and carbonate fraction in the soil. While BC amendment significantly decreased (p < 0.05) the concentrations of Cu in root cell walls and the root soluble fraction, it had no significant effects on Cu concentrations in the subcellular components of stems and leaves. The results revealed that EDTA mainly promoted the transfer of Cu to aboveground parts and accumulation in subcellular components of stems and leaves, while BC mainly limited Cu accumulation in root cell walls and the root soluble fraction. Ca concentrations in cell walls of roots, stems, and leaves increased as the Cu stress increased in all treatment groups, indicating that Ca plays an important role in relieving Cu toxicity in Amaranthus retroflexus L.


Subject(s)
Amaranthus/physiology , Charcoal/chemistry , Copper/metabolism , Edetic Acid/metabolism , Soil Pollutants/metabolism , Amaranthus/metabolism , Biodegradation, Environmental , Copper/analysis , Metals, Heavy , Mining , Plant Leaves/chemistry , Soil , Soil Pollutants/analysis
13.
Sci Total Environ ; 646: 940-950, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30067964

ABSTRACT

For 46 years (1957-2002), irrigation with wastewater has increased the amount of heavy metal and organic contaminants in soils and altered bacterial communities in Shenyang, northeastern China. There has been characterization of the different heavy metal and petroleum contaminants in two types of land uses (cornfields and paddy fields). The Nemerow composite indices of heavy metal contaminants have been higher in cornfields (1.17-4.73) than those in paddy fields (0.57-1.64). Molecular-based techniques and biochemical-based techniques were used to analyze soil microbial diversity in our study. The metabolic activity of soil microbe communities was higher in paddy sites than that in cornfields. Organic pollutants such as saturated and polycyclic aromatic hydrocarbons have significantly affected soil bacterial compositions. Heavy metals differed in how they disturbed the microbial communities. Arsenic (As) and lead (Pb) shifted the community composition and decreased microbial diversity; copper (Cu) reduced bacterial abundance in soil; and cadmium (Cd) and chromium (Cr) lowered the metabolic capabilities of bacteria.


Subject(s)
Soil Microbiology , Soil Pollutants/analysis , Wastewater/chemistry , Water Pollutants/analysis , China , Environmental Monitoring , Metals, Heavy , Soil
14.
BMC Plant Biol ; 18(1): 195, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30219055

ABSTRACT

BACKGROUND: Soil salinity and/or alkalinity impose a major constraint over crop yield and quality. An understanding of the molecular basis of the plant response to these stresses could inform the breeding of more tolerant varieties. The bread wheat cultivar SR3 exhibits an enhanced level of salinity tolerance, while SR4 is distinguished by its superior tolerance of alkalinity. RESULTS: The small RNA and degradome sequencing was used to explore the miRNAs and corresponding targets associated with the superior stress tolerance of the SR lines. An examination of the small RNA content of these two closely related lines revealed the presence of 98 known and 219 novel miRNA sequences. Degradome libraries were constructed in order to identify the targets of the miRNAs, leading to the identification of 58 genes targeted by 26 of the known miRNAs and 549 targeted by 65 of the novel ones. The function of two of the stress-responsive miRNAs was explored using virus-induced gene silencing. CONCLUSIONS: This analysis indicated that regulation mediated by both auxin and epigenetic modification can be important in determining both salinity and alkalinity tolerance, while jasmonate signaling and carbohydrate metabolism are important for salinity tolerance, as is proton transport for alkalinity tolerance.


Subject(s)
MicroRNAs/genetics , RNA, Plant/genetics , Salt Tolerance/genetics , Triticum/genetics , Gene Expression Regulation, Plant , Gene Silencing , Plants, Genetically Modified , Reproducibility of Results , Salinity , Soil/chemistry , Stress, Physiological/genetics , Triticum/physiology
15.
J Agric Food Chem ; 66(42): 10943-10951, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30265531

ABSTRACT

Source quantification of heavy metals in farmland is essential for developing and implementing restoration strategies. We used various data analyses to identify and quantify sources of arsenic, cadmium, chromium, copper, mercury, nickel, lead, and zinc in vegetable-growing soils. A new method of collaborative assessment, combining soil environmental quality and agricultural product safety, showed that approximately 5.20% of cultivation systems were multi-contaminated by heavy metals. The nonlinear relationship between pollution sources and the comprehensive contamination situation was established, deriving from a fitted bivariate model. The model revealed that anthropogenic sources and natural origins accounted for 65.8-86.0 and 34.2-14.0% of the comprehensive pollution, respectively. These results suggested that both human activities and natural factors contributed to the decline of local soil quality and the influence of the former was more substantial than that of the latter.


Subject(s)
Computer Simulation , Metals, Heavy/analysis , Metals, Heavy/metabolism , Soil Pollutants/chemistry , Soil/chemistry , Vegetables/chemistry , Agriculture , Data Interpretation, Statistical , Environmental Monitoring/methods , Food Contamination/analysis , Geographic Information Systems , Humans , Hydrogen-Ion Concentration , Industry , Principal Component Analysis , Trace Elements/analysis
16.
Environ Sci Pollut Res Int ; 24(30): 23607-23619, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28856565

ABSTRACT

To better understand the Hg(II) adsorption by some typical soils and explore the insights about the binding between Hg(II) and soils, a batch of adsorption and characteristic experiments was conducted. Results showed that Hg(II) adsorption was well fitted by the Langmuir and Freundlich. The maximum adsorption amount of cinnamon soil (2094.73 mg kg-1) was nearly tenfold as much as that of saline soil (229.49 mg kg-1). The specific adsorption of Hg(II) on four soil surface was confirmed by X-ray photoelectron spectroscopy (XPS) owing to the change of elemental bonding energy after adsorption. However, the specific adsorption is mainly derived from some substances in the soil. Fourier transform infrared spectroscopy (FTIR) demonstrated that multiple oxygen-containing functional groups (O-H, C=O, and C-O) were involved in the Hg(II) adsorption, and the content of oxygen functional groups determined the adsorption capacity of the soil. Meanwhile, scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS) more intuitive revealed the binding of mercury to organic matter, metal oxides, and clay minerals in the soil and fundamentally confirmed the results of XPS and FTIR to further elucidate adsorptive phenomena. The complexation with oxygen-containing functional groups and the precipitation with minerals were likely the primary mechanisms for Hg(II) adsorption on several typical soils. This study is critical in understanding the transportation of Hg(II) in different soils and discovering potential preventative measures.


Subject(s)
Coordination Complexes/analysis , Mercury Compounds/analysis , Models, Theoretical , Soil Pollutants/analysis , Soil/chemistry , Adsorption , China , Oxides , Particle Size , Surface Properties
17.
Environ Res ; 159: 152-157, 2017 11.
Article in English | MEDLINE | ID: mdl-28800473

ABSTRACT

Sample measurement of mercury (Hg) contents is a common method for health risk assessment of Hg through vegetable consumption in China. In the present work, we undertook the first modelling study which produced consistent health-risk maps for the whole eastern China. Regional maps of Probable Daily Intake (PDI) of Total mercury (THg) and Methylmercury (MeHg) over the studied area were produced, which were important for the researchers and policy-makers to evaluate the risk and to propose mitigation measures if necessary. The model predictions of air-borne Hg(0) concentrations agreed well with the observations and simulated Hg distribution over China as reported elsewhere. Our calculated PDIs of THg in vegetables were also comparable to those reported in the literature. There was 19% of the studied area with PDIs > 0.08µgkg-1 bw d-1 [half of the reference dose (RfD)]. The PDI for THg (MeHg) varied from 0.034 (0.007) to 0.162 (0.035)µgkg-1 bw d-1 with an average of 0.058 (0.013)µgkg-1 bw d-1. The highest calculated PDIs of THg over China was equal to the RfD, while the calculated PDIs of MeHg were well below the RfD of 0.1µgkg-1 bw d-1. The health risk was of concern through consumption of THg in leafy vegetables, rice/wheat and fish in Liaoning Provinces, Hunan, Zhejiang and Guizhou Provinces, with the associated PDIs exceeding the RfD. Despite this, the heath risk of MeHg exposure for the general population in southern China from the same foodstuff consumption was not a concern. The contribution of consumption through leafy vegetation should be considered when THg and MeHg exposures to the population are evaluated. The results improve our understanding in managing public health risk in China especially in large cities with high population, and thus have important contribution to enhance sustainable urbanization as one of the principle goals under the framework of the Nature-Based Solution (NBS).


Subject(s)
Environmental Exposure , Food Contamination/analysis , Mercury/analysis , Methylmercury Compounds/analysis , Models, Theoretical , Public Health , Vegetables/chemistry , China , Environmental Monitoring , Humans , Risk Assessment
18.
Chemosphere ; 184: 1388-1395, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28693113

ABSTRACT

A field survey was conducted to investigate the concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in vegetables, corresponding cultivated soils and irrigation waters from 36 open sites in high natural background area of Wuzhou, South China. Redundancy analysis, Spearman's rho correlation analysis and multiple regression analysis were adopted to evaluate the contributions of impacting factors on metal contents in the edible parts of vegetables. This study concluded that leafy and root vegetables had relatively higher metal concentrations and adjusted transfer factor values compared to fruiting vegetables according to nonparametric tests. Plant species, total soil metal content and soil pH value were affirmed as three critical factors with the highest contribution rate among all the influencing factors. The bivariate curve equation models for heavy metals in the edible vegetable tissues were well fitted to predict the metal concentrations in vegetables. The results from this case study also suggested that it could be one of efficient strategies for clean agricultural production and food safety in high natural background area to breed vegetable varieties with low heavy metal accumulation and to enlarge planting scale of these varieties.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Vegetables/chemistry , Agriculture , Cadmium/analysis , China , Copper/analysis , Soil/chemistry
19.
BMC Genomics ; 18(1): 24, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28056779

ABSTRACT

BACKGROUND: Soil alkalinity shows significant constraints to crop productivity; however, much less attention has been paid to analyze the effect of soil alkalinity on plant growth and development. Shanrong No. 4 (SR4) is an alkalinity tolerant bread wheat cultivar selected from an asymmetric somatic hybridization between the bread wheat cultivar Jinan 177 (JN177) and tall wheatgrass (Thinopyrum ponticum), which is a suitable material for studying alkalinity tolerant associate genes. RESULTS: The growth of SR4 plant seedlings was less inhibited than that of JN177 when exposed to alkalinity stress conditions. The root cytosolic Na+/K+ ratio in alkalinity stressed SR4 was lower than in JN177, while alkalinity stressed SR4 contained higher level of nutrient elements than in JN177. SR4 plant seedlings accumulated less malondialdehyde (MDA) and reactive oxygen species (ROS), it also showed higher activity of ROS scavenging enzymes than JN177 under alkalinity stress. The root intracellular pH decreased in both alkalinity stressed JN177 and SR4, however, it was much lower in SR4 than in JN177 under alkalinity stress. The transcriptomes of SR4 and JN177 seedlings exposed to alkalinity stress were analyzed by digital gene expression tag profiling method. Alkalinity stress conditions up- and down-regulated a large number of genes in the seedling roots that play the functions in the categories of transcription regulation, signal transduction and protein modification. CONCLUSIONS: SR4 expresses a superior tolerance to alkaline stress conditions which is due to its strong absorbing ability for nutrient ions, a strong regulating ability for intracellular and rhizosphere pH and a more active ROS scavenging ability.


Subject(s)
Adaptation, Biological/genetics , Gene Expression Profiling , Hydrogen-Ion Concentration , Stress, Physiological/genetics , Transcriptome , Triticum/genetics , Plant Roots/genetics , Reactive Oxygen Species/metabolism , Seedlings/genetics , Soil/chemistry
20.
Bioprocess Biosyst Eng ; 38(2): 219-27, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25090980

ABSTRACT

MnS is a p-type semiconductor with both antiferromagnetism and wide band gap, endowing it potential applications for short wavelength optoelectronic devices, solar cells and luminescent materials. Despite successful biosynthesis of nano CdS, PbS and ZnS with extremely low solubility product, there have been no reports available on biosynthesis of nano MnS so far because both PO4(3-) and OH(-) negatively disturb reaction between Mn(2+) and S(2-) through forming Mn3(PO4)2 and Mn(OH)2 as undesirable impurities. In this work, high-purity MnS nanocrystals were synthesized in presence of newly isolated Clostridiaceae sp. through strictly controlling pH value and PO4(3-) dose for the first time. The results showed that hexagonal-shaped γ-MnS with a diameter of 2-3 µm and a thickness of 200-300 nm was obtained by biosynthesis at 0.014 g/L PO4(3-) dose and pH 5.8. The hexagonal-shaped particle possessed dense and uniform texture. The γ-MnS had an obvious absorption peak at 325 nm and an emission peak at 435 nm as well as paramagnetic property with a coercivity of 52.91 Oe and a retentivity of 4.37 × 10(-3) emu/g at ambient temperature. The studies demonstrated that biosynthesis was qualified for preparation of nano metal sulfites with relatively high solubility product like MnS, widening its application spectrum.


Subject(s)
Clostridium/classification , Clostridium/metabolism , Manganese Compounds/chemistry , Manganese Compounds/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Sulfides/chemistry , Sulfides/metabolism , Manganese Compounds/isolation & purification , Materials Testing , Particle Size , Species Specificity , Sulfides/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...