Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Phys Rev E ; 105(4-2): 045003, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35590559

ABSTRACT

In amorphous solids, plastic flow is prone to localization into shear bands via an avalanche of shear-transformation (ST) rearrangements of constituent atoms or particles. However, such banding instability still remains a lack of direct experimental evidence. Using a real 3D colloidal glass under shear as proof of principle, we study STs' avalanches into shear banding that is controlled by strain rates. We demonstrate that, accompanying the emergent shear banding, the elastic response fields of the system, typical of a quadrupole for shear and a centrosymmetry for dilatation, lose the Eshelby-type spatial symmetry; instead, a strong correlation appears preferentially along the banding direction. By quantifying the fields' spatial decay, we identify an elastic criterion for the shear-banding instability, that is, the strongly correlated length of dilatation is smaller than the full length of shear correlation. Specifically, ST-induced free volume has to be confined within the elastic shear domain of ST so that those STs can self-organize to trigger shear banding. This physical picture is directly visualized by tracing the real-space evolution of local dilatation and ST particles. The present work unites the two classical mechanisms: free volume and STs, for the fundamental understanding of shear banding in amorphous solids.

3.
Phys Rev Lett ; 122(1): 015501, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012708

ABSTRACT

It has so far remained a major challenge to quantitatively predict the boson peak, a THz vibrational anomaly universal for glasses, from features in the amorphous structure. Using molecular dynamics simulations of a model Cu_{50}Zr_{50} glass, we decompose the boson peak to contributions from atoms residing in different types of Voronoi polyhedra. We then introduce a microscopic structural parameter to depict the "orientational order," using the vector pointing from the center atom to the farthest vertex of its Voronoi coordination polyhedron. This order parameter represents the most probable direction of transverse vibration at low frequencies. Its magnitude scales linearly with the boson peak intensity, and its spatial distribution accounts for the quasilocalized modes. This correlation is shown to be universal for different types of glasses.

4.
Proc Math Phys Eng Sci ; 474(2212): 20170836, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29740259

ABSTRACT

Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

5.
Oncogenesis ; 6(4): e316, 2017 Apr 10.
Article in English | MEDLINE | ID: mdl-28394355
6.
Oncogenesis ; 5: e217, 2016 04 11.
Article in English | MEDLINE | ID: mdl-27065453

ABSTRACT

Mogroside V is a triterpenoid isolated from the traditional Chinese medical plant Siraitia grosvenorii. Mogroside V has a high degree of sweetness and a low calorific content. Herein, we found that mogroside V possesses tumor growth inhibitory activity in in vitro and in vivo models of pancreatic cancer by promoting apoptosis and cell cycle arrest of pancreatic cancer cells (PANC-1 cells), which may in part be mediated through regulating the STAT3 signaling pathway. These results were confirmed in vivo in a mouse xenograft model of pancreatic cancer. In xenograft tumors, Ki-67 and PCNA, the most commonly used markers of tumor cell proliferation, were downregulated after intravenous administration of mogroside V. Terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that mogroside V treatment promoted apoptosis of pancreatic cancer cells in the xenograft tumors. Furthermore, we found that mogroside V treatment significantly reduced the expression of CD31-labeled blood vessels and of the pro-angiogenic factor vascular endothelial growth factor in the xenografts, indicating that mogroside V might limit the growth of pancreatic tumors by inhibiting angiogenesis and reducing vascular density. These results therefore demonstrate that the natural, sweet-tasting compound mogroside V can inhibit proliferation and survival of pancreatic cancer cells via targeting multiple biological targets.

7.
Nanoscale Res Lett ; 3(12): 524-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-20596444

ABSTRACT

Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...