Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 490
Filter
1.
Food Res Int ; 186: 114362, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729724

ABSTRACT

As food safety continues to gain prominence, phycocyanin (PC) is increasingly favored by consumers as a natural blue pigment, which is extracted from microalgae and serves the dual function of promoting health and providing coloration. Spirulina-derived PC demonstrates exceptional stability within temperature ranges below 45 °C and under pH conditions between 5.5 and 6.0. However, its application is limited in scenarios involving high-temperature processing due to its sensitivity to heat and light. This comprehensive review provides insights into the efficient production of PC from microalgae, covers the metabolic engineering of microalgae to increase PC yields and discusses various strategies for enhancing its stability in food applications. In addition to the most widely used Spirulina, some red algae and Thermosynechococcus can serve as good source of PC. The genetic and metabolic manipulation of microalgae strains has shown promise in increasing PC yield and improving its quality. Delivery systems including nanoparticles, hydrogels, emulsions, and microcapsules offer a promising solution to protect and extend the shelf life of PC in food products, ensuring its vibrant color and health-promoting properties are preserved. This review highlights the importance of metabolic engineering, multi-omics applications, and innovative delivery systems in unlocking the full potential of this natural blue pigment in the realm of food applications, provides a complete overview of the entire process from production to commercialization of PC, including the extraction and purification.


Subject(s)
Microalgae , Phycocyanin , Microalgae/metabolism , Spirulina/chemistry , Spirulina/metabolism , Metabolic Engineering
2.
3.
Aging (Albany NY) ; 16(10): 9228-9250, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38809509

ABSTRACT

Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are autoimmune disorders characterized by progressive and chronic damage to the bile ducts, presenting clinicians with significant challenges. The objective of this study is to identify potential druggable targets to offer new avenues for treatment. A Mendelian randomization analysis was performed to identify druggable targets for PBC and PSC. This involved obtaining Cis-protein quantitative trait loci (Cis-pQTL) data from the deCODE database to serve as exposure. Outcome data for PBC (557 cases and 281,127 controls) and PSC (1,715 cases and 330,903 controls) were obtained from the FINNGEN database. Colocalization analysis was conducted to determine whether these features share the same associated SNPs. Validation of the expression level of druggable targets was done using the GSE119600 dataset and immunohistochemistry for clinical samples. Lastly, the DRUGBANK database was used to predict potential drugs. The MR analysis identified eight druggable targets each for PBC and PSC. Subsequent summary-data-based MR and colocalization analyses showed that LEFTY2 had strong evidence as a therapeutic candidate for PBC, while HSPB1 had moderate evidence. For PSC, only FCGR3B showed strong evidence as a therapeutic candidate. Additionally, upregulated expression of these genes was validated in PBC and PSC groups by GEO dataset and clinical samples. This study identifies two novel druggable targets with strong evidence for therapeutic candidates for PBC (LEFTY2 and HSPB1) and one for PSC (FCGR3B). These targets offer new therapeutic opportunities to address the challenging nature of PBC and PSC treatment.


Subject(s)
Cholangitis, Sclerosing , Liver Cirrhosis, Biliary , Mendelian Randomization Analysis , Quantitative Trait Loci , Humans , Cholangitis, Sclerosing/genetics , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/drug therapy , Polymorphism, Single Nucleotide , Databases, Genetic
4.
ACS Nano ; 18(21): 13745-13754, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739489

ABSTRACT

The quest for sustainable urea production has directed attention toward electrocatalytic methods that bypass the energy-intensive traditional Haber-Bosch process. This study introduces an approach to urea synthesis through the coreduction of CO2 and NO3- using copper-doped molybdenum diselenide (Cu-MoSe2) with Cu-Mo dual sites as electrocatalysts. The electrocatalytic activity of the Cu-MoSe2 electrode is characterized by a urea yield rate of 1235 µg h-1 mgcat.-1 at -0.7 V versus the reversible hydrogen electrode and a maximum Faradaic efficiency of 23.43% at -0.6 V versus RHE. Besides, a continuous urea production with an enhanced average yield rate of 9145 µg h-1 mgcat.-1 can be achieved in a flow cell. These figures represent a substantial advancement over that of the baseline MoSe2 electrode. Density functional theory (DFT) calculations elucidate that Cu doping accelerates *NO2 deoxygenation and significantly decreases the energy barriers for C-N bond formation. Consequently, Cu-MoSe2 demonstrates a more favorable pathway for urea production, enhancing both the efficiency and feasibility of the process. This study offers valuable insights into electrode design and understanding of the facilitated electrochemical pathways.

5.
Int J Biol Macromol ; 269(Pt 2): 132060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719014

ABSTRACT

In the context of starch-protein composite gels, the influence of protein on gel formation significantly shapes the textural attributes of starch gels, leading to distinct outcomes. This study aimed to evaluate how different ratios of pea protein (PP) affect the properties and structures of starch-protein composite gels at low (10 wt%) and high (40 wt%) solid concentrations. The addition of PP had opposite effects on the two gels. Compared to the pure starch gel, the low-concentration composite gel (LCG) with 20 % PP experienced a 48.90 ± 0.33 % reduction in hardness, and the storage modulus (G') decreased from 14,100 Pa to 5250 Pa, indicating a softening effect of PP on LCG. Conversely, the hardness of the high-concentration composite gel (HCG) with 20 % PP exhibited a 62.19 ± 0.03 % increase in hardness, and G' increased from 12,100 Pa to 41,700 Pa, highlighting the enhancing effect of PP on HCG. SEM and fluorescence microscopy images showed that PP induced uneven network sizes in LCG, while HCG with a PP content of 20 %, PP, together with starch, formed a three-dimensional network. This study provides valuable insights and guidance for the design and production of protein-enriched starch gel products with different textural properties.


Subject(s)
Gels , Pea Proteins , Starch , Starch/chemistry , Gels/chemistry , Pea Proteins/chemistry , Pisum sativum/chemistry , Hardness
6.
Int J Biol Macromol ; 271(Pt 1): 132560, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782332

ABSTRACT

Diabetics usually suffer from chronic impaired wound healing due to facile infection, excessive inflammation, diabetic neuropathy, and peripheral vascular disease. Hence, the development of effective diabetic wound therapy remains a critical clinical challenge. Hydrogen sulfide (H2S) regulates inflammation, oxidative stress, and angiogenesis, suggesting a potential role in promoting diabetic wound healing. Herein, we propose a first example of fabricating an antibiotic-free antibacterial protein hydrogel with self-generation of H2S gas (H2S-Hydrogel) for diabetic wound healing by simply mixing bovine serum albumin­gold nanoclusters (BSA-AuNCs) with Bis[tetrakis(hydroxymethyl)phosphonium] sulfate (THPS) at room temperature within a few minutes. In this process, the amino group in BAS and the aldehyde group in THPS are crossed together by Mannich reaction. At the same time, tris(hydroxymethyl) phosphorus (trivalent phosphorus) from THPS hydrolysis could reduce disulfide bonds in BSA to sulfhydryl groups, and then the sulfhydryl group generates H2S gas under the catalysis of BSA-AuNCs. THPS in H2S-Hydrogel can destroy bacterial biofilms, while H2S can inhibit oxidative stress, promote proliferation and migration of epidermal/endothelial cells, increase angiogenesis, and thus significantly increase wound closure. It would open a new perspective on the development of effective diabetic wound dressing.

7.
Nat Microbiol ; 9(6): 1555-1565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698178

ABSTRACT

The detection of oral bacteria in faecal samples has been associated with inflammation and intestinal diseases. The increased relative abundance of oral bacteria in faeces has two competing explanations: either oral bacteria invade the gut ecosystem and expand (the 'expansion' hypothesis), or oral bacteria transit through the gut and their relative increase marks the depletion of other gut bacteria (the 'marker' hypothesis). Here we collected oral and faecal samples from mouse models of gut dysbiosis (antibiotic treatment and DSS-induced colitis) and used 16S ribosomal RNA sequencing to determine the abundance dynamics of oral bacteria. We found that the relative, but not absolute, abundance of oral bacteria increases, reflecting the 'marker' hypothesis. Faecal microbiome datasets from diverse patient cohorts, including healthy individuals and patients with allogeneic haematopoietic cell transplantation or inflammatory bowel disease, consistently support the 'marker' hypothesis and explain associations between oral bacterial abundance and patient outcomes consistent with depleted gut microbiota. By distinguishing between the two hypotheses, our study guides the interpretation of microbiome compositional data and could potentially identify cases where therapies are needed to rebuild the resident microbiome rather than protect against invading oral bacteria.


Subject(s)
Bacteria , Dysbiosis , Feces , Gastrointestinal Microbiome , Mouth , RNA, Ribosomal, 16S , Feces/microbiology , Humans , Animals , Mice , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Mouth/microbiology , Colitis/microbiology , Disease Models, Animal , Inflammatory Bowel Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Mice, Inbred C57BL , Female , Dextran Sulfate
8.
Chem Sci ; 15(16): 5993-6001, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665510

ABSTRACT

Axially chiral molecular scaffolds are widely present in therapeutic agents, natural products, catalysts, and advanced materials. The construction of such molecules has garnered significant attention from academia and industry. The catalytic asymmetric synthesis of axially chiral biaryls, along with other non-biaryl axially chiral molecules, has been extensively explored in the past decade. However, the atroposelective synthesis of C-O axial chirality remains largely underdeveloped. Herein, we document a copper-catalyzed atroposelective construction of C-O axially chiral compounds using novel 1,8-naphthyridine-based chiral ligands. Mechanistic investigations have provided good evidence in support of a mechanism involving synergistic interplay between a desymmetrization reaction and kinetic resolution process. The method described in this study holds great significance for the atroposelective synthesis of C-O axially chiral compounds, with promising applications in organic chemistry. The utilization of 1,8-naphthyridine-based ligands in copper catalysis is anticipated to find broad applications in asymmetric copper(i)-catalyzed azide-alkyne cycloadditions (CuAACs) and beyond.

9.
Adv Sci (Weinh) ; : e2309645, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38650176

ABSTRACT

Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented. This approach yields a wide range of highly enolizable α,α-diaryl aldehydes in good yields with excellent enantioselectivities. Facile transformations of the products, as well as an efficient synthesis of bioactive molecules, including an effective anti-smallpox agent and an FDA-approved antidepressant drug (+)-sertraline, are demonstrated.

10.
BMC Womens Health ; 24(1): 213, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566121

ABSTRACT

BACKGROUND: Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS: In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS: Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION: Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.


Subject(s)
Carcinoma , Glutaminase , Humans , Glutaminase/genetics , Multiomics , Research , Biomarkers
11.
NeuroRehabilitation ; 54(3): 421-434, 2024.
Article in English | MEDLINE | ID: mdl-38640179

ABSTRACT

BACKGROUND: The therapeutic effect and mechanism of robot-assisted upper limb training (RT) combined with intermittent theta burst stimulation (iTBS) for stroke patients are unclear. OBJECTIVE: The purpose of this study was to evaluate changes in brain activation after combination therapy and RT alone using functional near-infrared spectroscopy (fNIRS). METHODS: Patients were randomly assigned to two groups (iTBS + RT Group, n = 18, and RT Group, n = 18). Training was conducted five times a week for four weeks. fNIRS was used to measure changes in oxyhemoglobin in both the primary motor cortex (M1) and pre-motor and supplementary motor area (pSMA) during affected limb movement. Fugl-Meyer Assessment-Upper Extremity (FMA-UE) was employed for evaluating the function of upper limbs. RESULTS: Thirty-two patients with subacute stroke completed the study. The cortex of both hemispheres was extensively activated prior to treatment in the RT group. After training, overactivation decreased. The brain activation of the combined treatment group transferred to the affected side after the treatment. There was a notable enhancement in the FMA-UE scores for both groups, with the combined group's progress significantly surpassing that of the RT group. CONCLUSION: RT combined with iTBS can improve the motor function of stroke patients and promote the balance between cerebral hemispheres.


Subject(s)
Motor Cortex , Robotics , Spectroscopy, Near-Infrared , Stroke Rehabilitation , Stroke , Transcranial Magnetic Stimulation , Upper Extremity , Humans , Male , Female , Spectroscopy, Near-Infrared/methods , Middle Aged , Stroke Rehabilitation/methods , Upper Extremity/physiopathology , Transcranial Magnetic Stimulation/methods , Stroke/physiopathology , Stroke/therapy , Aged , Motor Cortex/physiopathology , Adult , Combined Modality Therapy , Treatment Outcome
12.
J Chromatogr Sci ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38446787

ABSTRACT

Qizhi Xiangfu Pills (QZXFPs) is one of the most commonly used traditional Chinese medicine preparations for the treatment of dysmenorrhea, but the existing quality evaluation standards have certain shortcomings and deficiencies. An effective and scientific quality evaluation method plays a vital role in medication safety. In this study, fingerprint combined with chemometric analysis and quantitative analysis of multi-components by a single marker (QAMS) method was used to comprehensively evaluate the quality of QZXFPs. The fingerprints of 28 batches samples were established and 23 common peaks were distinguished, of which 7 peaks were identified as albiflorin, paeoniflorin, baicalin, ligustilide, cyperotundone, nootkatone and α-cyperone. The content of these seven active ingredients was determined simultaneously by the QAMS method and there was no significantly different between QAMS and the external standard method. Additionally, similarity analysis, hierarchical cluster analysis, principal component analysis and orthogonal partial least squares discrimination analysis were applied for classifying the 28 batches of samples, and to find the main components causing the quality differences between different batches. In conclusion, the established method can comprehensively evaluate the consistency of quality between different batches and provide a reference for formulation quality evaluation to ensure safe and effective application of QZXFPs.

13.
Transl Psychiatry ; 14(1): 134, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443348

ABSTRACT

Suicidal behavior and non-suicidal self-injury (NSSI) are common in adolescent patients with major depressive disorder (MDD). Thus, delineating the unique characteristics of suicide attempters having adolescent MDD with NSSI is important for suicide prediction in the clinical setting. Here, we performed psychological and biochemical assessments of 130 youths having MDD with NSSI. Participants were divided into two groups according to the presence/absence of suicide attempts (SAs). Our results demonstrated that the age of suicide attempters is lower than that of non-attempters in participants having adolescent MDD with NSSI; suicide attempters had higher Barratt Impulsiveness Scale (BIS-11) impulsivity scores and lower serum CRP and cortisol levels than those having MDD with NSSI alone, suggesting levels of cortisol and CRP were inversely correlated with SAs in patients with adolescent MDD with NSSI. Furthermore, multivariate regression analysis revealed that NSSI frequency in the last month and CRP levels were suicidal ideation predictors in adolescent MDD with NSSI, which may indicate that the increased frequency of NSSI behavior is a potential risk factor for suicide. Additionally, we explored the correlation between psychological and blood biochemical indicators to distinguish suicide attempters among participants having adolescent MDD with NSSI and identified a unique correlation network that could serve as a marker for suicide attempters. Our research data further suggested a complex correlation between the psychological and behavioral indicators of impulsivity and anger. Therefore, our study findings may provide clues to identify good clinical warning signs for SA in patients with adolescent MDD with NSSI.


Subject(s)
Depressive Disorder, Major , Self-Injurious Behavior , Adolescent , Humans , Suicide, Attempted , Hydrocortisone , Anger
14.
Aging (Albany NY) ; 16(7): 6008-6034, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38536014

ABSTRACT

Thyroid eye disease (TED) has brought great physical and mental trauma to patients worldwide. Although a few potential signaling pathways have been reported, knowledge of TED remains limited. Our objective is to explore the fundamental mechanism of TED and identify potential therapeutic targets using diverse approaches. To perform a range of bioinformatic analyses, such as identifying differentially expressed genes (DEGs), conducting enrichment analysis, establishing nomograms, analyzing weighted gene correlation network analysis (WGCNA), and studying immune infiltration, the datasets GSE58331, GSE105149, and GSE9340 were integrated. Further validation was conducted using qPCR, western blot, and immunohistochemistry techniques. Eleven ferroptosis-related DEGs derived from the lacrimal gland were originally screened. Their high diagnostic value was proven, and diagnostic prediction nomogram models with high accuracy and robustness were established by using machine learning. A total of 15 hub gene-related DEGs were identified by WGCNA. Through CIBERSORTx, we uncovered five immune cells highly correlated with TED and found several special associations between these immune cells and the above DEGs. Furthermore, EGR2 from the thyroid sample was revealed to be closely negatively correlated with most DEGs from the lacrimal gland. High expression of APOD, COPB2, MYH11, and MYCN, as well as CD4/CD8 T cells and B cells, was verified in the periorbital adipose tissues of TED patients. To summarize, we discovered a new gene signature associated with ferroptosis that has a critical impact on the development of TED and provides valuable insights into immune infiltration. These findings might highlight the new direction and therapeutic strategies of TED.


Subject(s)
Ferroptosis , Graves Ophthalmopathy , Ferroptosis/genetics , Humans , Graves Ophthalmopathy/genetics , Graves Ophthalmopathy/immunology , Graves Ophthalmopathy/pathology , Gene Regulatory Networks , Gene Expression Profiling , Computational Biology , Thyroid Gland/immunology , Thyroid Gland/pathology , Thyroid Gland/metabolism , Transcriptome , Lacrimal Apparatus/immunology , Lacrimal Apparatus/pathology , Lacrimal Apparatus/metabolism , Databases, Genetic , Nomograms
15.
Nat Commun ; 15(1): 2406, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493186

ABSTRACT

Microbial interactions can lead to different colonization outcomes of exogenous species, be they pathogenic or beneficial in nature. Predicting the colonization of exogenous species in complex communities remains a fundamental challenge in microbial ecology, mainly due to our limited knowledge of the diverse mechanisms governing microbial dynamics. Here, we propose a data-driven approach independent of any dynamics model to predict colonization outcomes of exogenous species from the baseline compositions of microbial communities. We systematically validate this approach using synthetic data, finding that machine learning models can predict not only the binary colonization outcome but also the post-invasion steady-state abundance of the invading species. Then we conduct colonization experiments for commensal gut bacteria species Enterococcus faecium and Akkermansia muciniphila in hundreds of human stool-derived in vitro microbial communities, confirming that the data-driven approaches can predict the colonization outcomes in experiments. Furthermore, we find that while most resident species are predicted to have a weak negative impact on the colonization of exogenous species, strongly interacting species could significantly alter the colonization outcomes, e.g., Enterococcus faecalis inhibits the invasion of E. faecium invasion. The presented results suggest that the data-driven approaches are powerful tools to inform the ecology and management of microbial communities.


Subject(s)
Enterococcus faecium , Microbiota , Humans , Feces/microbiology , Microbial Interactions , Enterococcus faecalis
16.
ACS Appl Mater Interfaces ; 16(12): 14489-14502, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38478962

ABSTRACT

Multimodal tumor therapy with nanotechnology is an effective and integrative strategy to overcome the limitations of therapeutic efficacy and possible side effects associated with monotherapy. However, the construction of multimodal treatment nanoplatforms often involves various functional components, leading to certain challenges, such as time-consuming synthesis processes, low product yield, and inadequate biocompatibility. To address these issues, we have developed a straightforward method for preparing ultrathin Cu9S5 nanosheets (NSs) with surface defects for photothermal/photodynamic/chemodynamic therapy. The ultrathin morphology of the Cu9S5 NSs (with 2-3 nm) not only confers excellent biocompatibility but also enables broad-spectrum absorption with a remarkable photothermal conversion efficiency (58.96%) under 1064 nm laser irradiation. Moreover, due to the presence of a S vacancy, these Cu9S5 NSs exhibit favorable enzyme-like properties, including reactive oxygen species generation and glutathione consumption, particularly under laser irradiation. The efficacy of related tumor therapy and antibacterial treatment is significantly enhanced by the synergistic activation of photothermal/photodynamic/chemodynamic therapy through 1064 nm laser irradiation, as demonstrated by both in vitro and in vivo experiments. This study presents a novel strategy for multimodal tumor therapy with the prepared ultrathin Cu9S5 NSs, which holds promising pathways for photodynamic therapy in the NIR-II region.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Neoplasms/drug therapy , Combined Modality Therapy , Phototherapy , Sulfur , Cell Line, Tumor
17.
Adv Mater ; : e2313152, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491731

ABSTRACT

Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.

18.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38479384

ABSTRACT

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Mice , Animals , Bile Acids and Salts , Deoxycholic Acid/pharmacology , CD8-Positive T-Lymphocytes
19.
Int J Biol Macromol ; 265(Pt 1): 130713, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471612

ABSTRACT

Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP). A convenient three-channel device was employed to prepare chitosan (CS)/sodium alginate (ALG)-RPPs nanoparticles (CS/ALG-RPPs) at a ratio of 1:3:1 for CS, ALG, and RPPs. CS/ALG-RPPs possessed optimal encapsulation efficiencies of 90.7 % (CS/ALG-RNPP) and 91.4 % (CS/ALG-RCPP), with loading capacities of 15.38 % (CS/ALG-RNPP) and 16.63 % (CS/ALG-RCPP) at the specified ratios. The electrostatic association between CS and ALG was corroborated by zeta potential and near infrared analysis. 13C NMR analysis verified successful RPPs loading, with CS/ALG-RNPP displaying superior stability. Pharmacokinetics showed that both nanoparticles were sustained release and transported irregularly (0.43 < n < 0.85). Compared with the control group, CS/ALG-RPPs exhibited significantly increased glucose tolerance, serum GLP-1 (Glucagon-like peptide 1) content, and CaSR expression which play pivotal roles in glucose homeostasis (*p < 0.05). These findings proposed that CS/ALG-RPPs hold promise in achieving sustained release within the intestinal epithelium, thereby augmenting the therapeutic efficacy of targeted peptides.


Subject(s)
Brassica napus , Chitosan , Nanoparticles , Humans , Chitosan/chemistry , Drug Carriers/chemistry , Delayed-Action Preparations , Brassica napus/metabolism , Alginates/chemistry , Nanoparticles/chemistry , Glucose , Peptides
20.
J Cell Mol Med ; 28(6): e18135, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429900

ABSTRACT

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Division , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Lung Neoplasms/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...