Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(18): e202401828, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38403819

ABSTRACT

Self-assembly of inorganic nanoparticles (NPs) is an essential tool for constructing structured materials with a wide range of applications. However, achieving ordered assembly structures with externally programmable properties in binary NP systems remains challenging. In this work, we assemble binary inorganic NPs into hierarchically pH-responsive alternating copolymer-like nanostructures in an aqueous medium by engineering the interparticle electrostatic interactions. The polymer-grafted NPs bearing opposite charges are viewed as nanoscale monomers ("nanomers"), and copolymerized into alternating nano-copolymers (ANCPs) driven by the formation of interparticle "bonds" between nanomers. The resulting ANCPs exhibit reversibly responsive "bond" length (i.e., the distance between nanomers) in response to the variation of pH in a range of ~7-10, allowing precise control over the surface plasmon resonance of ANCPs. Moreover, specific interparticle "bonds" can break up at pH≥11, leading to the dis-assembly of ANCPs into molecule-like dimers and trimers. These dimeric and trimeric structures can reassemble to form ANCPs owing to the resuming of interparticle "bonds", when the pH value of the solution changes from 11 to 7. The hierarchically responsive nanostructures may find applications in such as biosensing, optical waveguide, and electronic devices.

2.
Angew Chem Int Ed Engl ; 63(1): e202313406, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37801444

ABSTRACT

Colloidal molecules (CMs) are precisely defined assemblies of nanoparticles (NPs) that mimic the structure of real molecules, but externally programming the precise self-assembly of CMs is still challenging. In this work, we show that the photo-induced self-assembly of complementary copolymer-capped binary NPs can be precisely controlled to form clustered ABx or linear (AB)y CMs at high yield (x is the coordination number of NP-Bs, and y is the repeating unit number of AB clusters). Under UV light irradiation, photolabile p-methoxyphenacyl groups of copolymers on NP-A*s are converted to carboxyl groups (NP-A), which react with tertiary amines of copolymers on NP-B to trigger the directional NP bonding. The x value of ABx can be precisely controlled between 1 and 3 by varying the irradiation duration and hence the amount of carboxyl groups generated on NP-As. Moreover, when NP-A* and NP-B are irradiated after mixing, the assembly process generates AB clusters or linear (AB)y structures with alternating sequence of the binary NPs. This assembly approach offers a simple yet non-invasive way to externally regulate the formation of various CMs on demand without the need of redesigning the surface chemistry of NPs for use in drug delivery, diagnostics, optoelectronics, and plasmonic devices.

3.
ACS Appl Mater Interfaces ; 14(16): 18806-18815, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35413175

ABSTRACT

Mn2+-doped semiconductor nanocrystals with tuned location and concentration of Mn2+ ions can yield diverse coupling regimes, which can highly influence their optical properties such as emission wavelength and photoluminescence (PL) lifetime. However, investigation on the relationship between the Mn2+ concentration and the optical properties is still challenging because of the complex interactions of Mn2+ ions and the host and between the Mn2+ ions. Here, atomically flat ZnS nanoplatelets (NPLs) with uniform thickness were chosen as matrixes for Mn2+ doping. Using time-resolved (TR) PL spectroscopy and density functional theory (DFT) calculations, a connection between coupling and PL kinetics of Mn2+ ions was established. Moreover, it is found that the Mn2+ ions residing on the surface of a nanostructure produce emissive states and interfere with the change of properties by Mn2+-Mn2+ coupling. In a configuration with suppressed surface contribution to the optical response, we show the underlying physical reasons for double and triple exponential decay by DFT methods. We believe that the presented doping strategy and simulation methodology of the Mn2+-doped ZnS (ZnS:Mn) system is a universal platform to study dopant location- and concentration-dependent properties also in other semiconductors.

4.
J Phys Chem Lett ; 10(14): 3828-3835, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31246028

ABSTRACT

Ultrathin semiconductor nanocrystals (NCs) with at least one dimension below their exciton Bohr radius receive a rapidly increasing attention due to their unique physicochemical properties. These superior properties highly depend on the shape and crystal phase of semiconductor NCs. Here, we demonstrate not only the synthesis of well-defined ultrathin ZnS nanoplatelets (NPLs) with excitonic absorption and emission, but also the shape/phase transformation between wurtzite (WZ) NPLs and zinc blende (ZB) nanorods (NRs). UV-vis absorption spectra of WZ-ZnS NPLs clearly exhibit a sharp excitonic peak that is not observed in ZB-ZnS NRs. Besides, the photoluminescence characterization shows that WZ-ZnS NPLs have a narrow excitonic emission peak, while ZB-ZnS NRs exhibit a broad collective emission band consisting of four emission peaks. The appearance of excitonic features in the absorption spectra of ZnS NPLs is explained by interband electronic transitions, which is simulated in the framework of atomic effective pseudopotentials (AEP).

5.
Int J Biol Macromol ; 135: 1034-1042, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31173832

ABSTRACT

In this study, a novel lactic acid probiotic named Bacillus sp. DU-106 was introduced to ferment Dendrobium officinale (D. officinale) polysaccharides, and the effects of such process on the structure and immunostimulatory activity of D. officinale polysaccharide were investigated. Three polysaccharides were subsequently purified from unfermented D. officinale stem (UDP-1), fermented D. officinale stem (FDP-1), and polysaccharide in fermented liquid (FLP-1). After fermentation, the average molecular weight (Mw) of FDP-1 increased from 4.92 × 105 Da (UDP-1) to 5.21 × 105 Da. Fermentation increased the proportions of mannose in FDP-1 by 51.38% compared with that in UDP-1. FDP-1 substantially stimulated cell proliferation and nitric oxide and interleukin-1ß (IL-1ß) production in RAW 264.7 cells. Probiotic fermentation by Bacillus sp. DU-106 could alter monosaccharide composition and Mw and promote immunostimulatory activities of D. officinale polysaccharide, implying the possible application of Bacillus sp. DU-106-fermented D. officinale polysaccharides as auxiliary functional material in immunotherapy.


Subject(s)
Bacillus/metabolism , Dendrobium/chemistry , Fermentation , Polysaccharides/metabolism , Animals , Biomarkers , Cell Survival/drug effects , Chemical Phenomena , Interleukin-1beta/biosynthesis , Mice , Molecular Structure , Phagocytosis , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , RAW 264.7 Cells , Spectrum Analysis
6.
Langmuir ; 33(46): 13376-13383, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29057659

ABSTRACT

Sensitivity and reproducibility are two major concerns to improve the performance and extend the range of practical applications of surface-enhanced Raman scattering (SERS). A theoretical report reveals that hot spots formed by gold nanoparticles with a tip-to-tip configuration would generate the maximum electric field enhancement because of the lightning rod effect. In our present study, we constructed a giant vesicle consisting of anchored tiny gold nanowires to provide a high density of sharp tip-to-tip nanogaps for SERS application. The tiny gold nanowires were directly grown and anchored onto the surfaces of polystyrene (PS) microspheres by a seed-mediated method. Then, the removal of PS microspheres by tetrahydrofuran led to the formation of the giant gold vesicles with hierarchical cage structures, providing the sharp tips and high density of hot spots for improving SERS performance. Compared with the nonwire structure (island and inhibited nanoparticle), giant gold vesicles with tiny wires showed a higher SERS enhancement factor (9.90 × 107) and quantitative SERS analysis in the range of 10-4 to 10-7 M. In addition, the large-scale giant gold vesicle array on the silica substrate resulted in a high reproducibility of SERS signals with the variation of intensities less than 7.6%.

7.
Langmuir ; 33(22): 5378-5384, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28502174

ABSTRACT

Due to the larger surface area and the synergistic effects between two noble metals, the bimetallic superstructures exhibit enhanced distinctive optical, catalytic, and photothermal performances and surface-enhanced Raman scattering (SERS) "hot-spot" effect, and thus have attracted great interest in various applications. Compared with the common Pd, Pt hierarchical structures coated onto Au nanoparticles (NPs), easily synthesized via fast autocatalytic surface growth arising from intrinsic properties of Pd and Pt metals, precisely controlling the hierarchical Ag growth onto Au NPs is rarely reported. In our present study, the reducing agent dopamine dithiocarbamate (DDTC) was covalently capped onto the first metal core (Au) to delicately control the growth model of the second metal (Ag). This results in heterogeneous nucleation and growth of Ag precursor on the surface of Au nanorods (NRs), and further formation of cornlike bimetallic Au/Ag core-shell superstructures, which usually cannot be achieved from traditional epitaxial growth. The thickness of the hierarchical Ag shell was finely tuned in a size range from 8 to 22 nm by simply varying the amount of the ratio between Ag ions and DDTC capped on Au NR core. The tunable Ag shell leads to anisotropic bimetallic Au/Ag core-shell superstructures, displaying two distinctive plasmonic resonances in the near-infrared region (NIR). In particular, the longitudinal surface plasmon resonance exhibits a broadly tunable range from 840 to 1277 nm. Additionally, the rich hot spots from obtained Au/Ag superstructures significantly enhance the SERS performance.

8.
Sci Rep ; 7: 41419, 2017 01 30.
Article in English | MEDLINE | ID: mdl-28134263

ABSTRACT

The probe materials play a significant role in improving the detection efficiency and sensitivity of lateral-flow immunochromatographic test strip (ICTS). Unlike conventional ICTS assay usually uses single-component, solid gold nanoparticles as labeled probes, in our present study, a bimetallic, hollow Au-Ag nanoparticles (NPs) labeled ICTS was successfully developed for the detection of clenbuterol (CLE). The hollow Au-Ag NPs with different Au/Ag mole ratio and tunable size were synthesized by varying the volume ratio of [HAuCl4]:[Ag NPs] via the galvanic replacement reaction. The surface of hollow Ag-Au NPs was functionalized with 11-mercaptoundecanoic acid (MUA) for further covalently bonded with anti-CLE monoclonal antibody. Overall size of the Au-Ag NPs, size of the holes within individual NPs and also Au/Ag mole ratio have been systematically optimized to amplify both the visual inspection signals and the quantitative data. The sensitivity of optimized hollow Au-Ag NPs probes has been achieved even as low as 2 ppb in a short time (within 15 min), which is superior over the detection performance of conventional test strip using Au NPs. The optimized hollow Au-Ag NPs labeled test strip can be used as an ideal candidate for the rapid screening of CLE in food samples.


Subject(s)
Chromatography, Affinity/methods , Clenbuterol/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Color , Limit of Detection , Metal Nanoparticles/ultrastructure , Porosity , Spectrophotometry, Ultraviolet , Staining and Labeling , Surface Properties
9.
ACS Appl Mater Interfaces ; 9(7): 5968-5973, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28135056

ABSTRACT

Although the construction of superwettability materials for oil/water separation has been developed rapidly, the postprocess of the used separation materials themselves is still a thorny problem due to their nondegradation in the natural environment. In this work, we reported the functionalization of polylactic acid (PLA) nonwoven fabric as superoleophilic and superhydrophobic material for efficient treatment of oily wastewater with eco-friendly post-treatment due to the well-known biodegradable nature of PLA matrix.

10.
ACS Appl Mater Interfaces ; 8(41): 27949-27955, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27700031

ABSTRACT

We present the uniform and high-yield synthesis of a novel gold nanostructure of compass shape composed of a Au sphere at the central and two gradually thinning conical tips at the opposed poles. The Au compass shapes were synthesized through a seed-mediated growth approach employing a binary mixture of cetyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) as the structure-directing agents. Under the condition of single surfactant (CTAB), the spherical seeds tend to grow into larger spherical Au nanoparticles (NPs); while the spherical seeds favor the formation of Au compass shaped NPs using two mixed surfactants (CTAB/NaOL). The reaction kinetics clearly shows a growth mechanism of Au compass shaped NPs. Interestingly, due to their anisotropic structure, Au compass shaped NPs show two distinctive plasmonic resonances, similar to those from Au nanorods. Particularly, the longitudinal surface plasmon resonances of Au compass shaped NPs exhibit a broadly tunable range from 600 to 865 nm. In addition, the obtained Au compass shaped NPs can be self-assembled into a two-dimensional monolayer with closely packed and highly aligned NPs, which results in periodic arrays of overlapped Au tips, generating hot spots for high-performance surface-enhanced Raman scattering.

11.
J Nanosci Nanotechnol ; 16(6): 5683-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427615

ABSTRACT

Hierarchical Au nanostructures have attracted considerable attention owing to their rich hot-spots in inherent structures that have found various applications in surface-enhanced Raman scattering (SERS) based sensing and imaging. Herein we facilely synthesized uniform hierarchical raspberry-like Au nanostructures with tunable size via a seed-mediated growth approach employing a binary mixture of quaternized chitosan (QCS) and 5-bromosalicylic acid (5-BrSA). 5-BrSA plays an important role in tuning shapes and improving uniformity of resultant gold nanoparticles (AuNPs). The obtained raspberry-like Au nanostructures have a spherical profile and randomly arranged protrusions on the outsides, and their size can be finely tuned in a range from 50 to 120 nm. The rough surfaces of the special raspberry-like Au nanostructures endow them higher SERS performance than spherical Au spheres with smooth surfaces, which is promising for the application of SERS based sensors and optical imaging.

12.
J Nanosci Nanotechnol ; 16(6): 5829-32, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427639

ABSTRACT

Precisely controlling Au plasmonic coupling aggregates is of fundamental importance for tuning spectroscopic characters, and also is an effective way of access to practical devices. In our present study, we report a new type of amphiphilic gold nanoparticles (AuNPs) with the surfaces modified by thermo-responsive polymer brushes via sequential "grafting to" and "grafting from" reactions. This novel AuNPs can spontaneously self-assemble into AuNPs oligomers such as dimmers and trimmers by taking advantage of the molecular chain reorganization of polymer brushes. Interestingly, AuNPs oligomers can be reversibly disassembled into individually isolated AuNPs by changing temperature. These smart, temperature dependent reversible AuNPs oligomers have great potential applications of plasmonic coupling based sensors and optical imaging.

13.
Langmuir ; 31(3): 1164-71, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25540841

ABSTRACT

A photoresponsive amphiphilic gold nanoparticle (AuNP) is achieved through the decoration of AuNP with hydrophilic poly(ethylene glycol) (PEG) and hydrophobic photoresponsive polymethacrylate containing spiropyran units (PSPMA). Owing to the photoresponsive property of spiropyran units, the amphiphilic AuNPs can easily achieve the controllable assembly/disassembly behaviors under the trigger by light. Under visible light, spiropyran units provide weak intermolecular interactions between neighbored AuNPs, leading to isolated AuNPs in the solution. While under UV light irradiation, spiropyran units in the polymer brushes transform into merocyanine isomer with conjugated structure and zwitterionic state, promoting the integration of adjacent AuNPs through π-π stacking and electrostatic attractions, further leading to the formation of Au oligomers. The smart reversible AuNP oligomers exhibited switchable plasmonic coupling for tuning surface-enhanced Raman scattering (SERS) activity, which is promising for the application of SERS based sensors and optical imaging.

14.
J Med Internet Res ; 11(4): e47, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19897458

ABSTRACT

BACKGROUND: Computer-mediated educational applications can provide a self-paced, interactive environment to deliver educational content to individuals about their health condition. These programs have been used to deliver health-related information about a variety of topics, including breast cancer screening, asthma management, and injury prevention. We have designed the Patient Education and Motivation Tool (PEMT), an interactive computer-based educational program based on behavioral, cognitive, and humanistic learning theories. The tool is designed to educate users and has three key components: screening, learning, and evaluation. OBJECTIVE: The objective of this tutorial is to illustrate a heuristic evaluation using a computer-based patient education program (PEMT) as a case study. The aims were to improve the usability of PEMT through heuristic evaluation of the interface; to report the results of these usability evaluations; to make changes based on the findings of the usability experts; and to describe the benefits and limitations of applying usability evaluations to PEMT. METHODS: PEMT was evaluated by three usability experts using Nielsen's usability heuristics while reviewing the interface to produce a list of heuristic violations with severity ratings. The violations were sorted by heuristic and ordered from most to least severe within each heuristic. RESULTS: A total of 127 violations were identified with a median severity of 3 (range 0 to 4 with 0 = no problem to 4 = catastrophic problem). Results showed 13 violations for visibility (median severity = 2), 38 violations for match between system and real world (median severity = 2), 6 violations for user control and freedom (median severity = 3), 34 violations for consistency and standards (median severity = 2), 11 violations for error severity (median severity = 3), 1 violation for recognition and control (median severity = 3), 7 violations for flexibility and efficiency (median severity = 2), 9 violations for aesthetic and minimalist design (median severity = 2), 4 violations for help users recognize, diagnose, and recover from errors (median severity = 3), and 4 violations for help and documentation (median severity = 4). CONCLUSION: We describe the heuristic evaluation method employed to assess the usability of PEMT, a method which uncovers heuristic violations in the interface design in a quick and efficient manner. Bringing together usability experts and health professionals to evaluate a computer-mediated patient education program can help to identify problems in a timely manner. This makes this method particularly well suited to the iterative design process when developing other computer-mediated health education programs. Heuristic evaluations provided a means to assess the user interface of PEMT.


Subject(s)
Motivation , Patient Education as Topic/methods , User-Computer Interface , Adult , Asthma/rehabilitation , Child , Feedback , Humans , Influenza Vaccines , Learning , Parents , Peer Review/methods , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...