Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959481

ABSTRACT

Extracting iron while minimizing the health and environmental risks associated with arsenic contamination necessitates the removal of arsenic from arsenic-bearing iron ores to ensure a safe and sustainable supply of this metal for industries. The beneficiation of iron minerals and arsenic-bearing minerals from arsenic-bearing iron ores with a calcification-magnetizing roasting and low-intensity magnetic separation (CMR-LMS) process is investigated in this work. The results show that the process is successful in extracting iron minerals and eliminating arsenic-containing minerals. The roasting involves two key steps: calcification and magnetizing, which change hematite and goethite into magnetite and arsenic-bearing minerals into calcium arsenates. The process's separation efficiency of the CMR-LMS is closely linked to the parameters such as roasting temperature, roasting time, coke, alkalinity, and the liberation of gangue minerals from iron minerals. Through grinding and secondary magnetic separation, the iron minerals and gangue components, as well as arsenic, in roasted sand can be further separated. The optimum procedure results in a high-grade iron concentrate with an iron assay of 65.65%, an Fe recovery rate of 80.07%, and an arsenic content of 0.085%, while achieving a 93.29% As removal rate from the original ore that has 45.32% Fe and 0.70% As.

SELECTION OF CITATIONS
SEARCH DETAIL
...