Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 126: 143-152, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32217355

ABSTRACT

Complex network is a general model to represent the interactions within technological, social, information, and biological interaction. Often, the direct detection of the interaction relationship is costly. Thus, network structure reconstruction, the inverse problem in complex networked systems, is of utmost importance for understanding many complex systems with unknown interaction structures. In addition, the data collected from real network system is often contaminated by noise, which makes the network structure inference task much more challenging. In this paper, we develop a new framework for the game dynamics network structure reconstruction based on deep learning method. In contrast to the compressive sensing methods that employ computationally complex convex/greedy algorithms to solve the network reconstruction task, we introduce a deep learning framework that can learn a structured representation from nodes data and efficiently reconstruct the game dynamics network structure with few observation data. Specifically, we propose the denoising autoencoders (DAEs) as the unsupervised feature learner to capture statistical dependencies between different nodes. Compared to the compressive sensing based method, the proposed method is a global network structure inference method, which can not only get the state-of-art performance, but also obtain the structure of network directly. Besides, the proposed method is robust to noise in the observation data. Moreover, the proposed method is also effective for the network which is not exactly sparse. Accordingly, the proposed method can extend to a wide scope of network reconstruction task in practice.


Subject(s)
Deep Learning , Game Theory , Neural Networks, Computer , Algorithms , Humans
2.
Sensors (Basel) ; 19(16)2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31416248

ABSTRACT

Traffic sensing is one of the promising applications to guarantee safe and efficient traffic systems in vehicular networks. However, due to the unique characteristics of vehicular networks, such as limited wireless bandwidth and dynamic mobility of vehicles, traffic sensing always faces high estimation error based on collected traffic data with missing elements and over-high communication cost between terminal users and central server. Hence, this paper investigates the traffic sensing system in vehicular networks with mobile edge computing (MEC), where each MEC server enables traffic data collection and recovery in its local server. On this basis, we formulate the bandwidth-constrained traffic sensing (BCTS) problem, aiming at minimizing the estimation error based on the collected traffic data. To tackle the BCTS problem, we first propose the bandwidth-aware data collection (BDC) algorithm to select the optimal uploaded traffic data by evaluating the priority of each road segment covered by the MEC server. Then, we propose the convex-based data recovery (CDR) algorithm to minimize estimation error by transforming the BCTS into an l 2 -norm minimization problem. Last but not the least, we implement the simulation model and conduct performance evaluation. The comprehensive simulation results verify the superiority of the proposed algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...