Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1288363, 2023.
Article in English | MEDLINE | ID: mdl-38026989

ABSTRACT

Introduction: SARS-CoV-2 is a novel coronavirus with highly contagious and has posed a significant threat to global public health. The main protease (Mpro) is a promising target for antiviral drugs against SARS-CoV-2. Methods: In this study, we have used pharmacophore-based drug design technology to identify potential compounds from drug databases as Mpro inhibitors. Results: The procedure involves pharmacophore modeling, validation, and pharmacophore-based virtual screening, which identifies 257 compounds with promising inhibitory activity. Discussion: Molecular docking and non-bonding interactions between the targeted protein Mpro and compounds showed that ENA482732 was the best compound. These results provided a theoretical foundation for future studies of Mpro inhibitors against SARS-CoV-2.

2.
Biomed Pharmacother ; 159: 114247, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36689835

ABSTRACT

A new coronavirus, known as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is a highly contagious virus and has caused a massive worldwide health crisis. While large-scale vaccination efforts are underway, the management of population health, economic impact and asof-yet unknown long-term effects on physical and mental health will be a key challenge for the next decade. The papain-like protease (PLpro) of SARS-CoV-2 is a promising target for antiviral drugs. This report used pharmacophore-based drug design technology to identify potential compounds as PLpro inhibitors against SARS-CoV-2. The optimal pharmacophore model was fully validated using different strategies and then was employed to virtually screen out 10 compounds with inhibitory. Molecular docking and non-bonding interactions between the targeted protein PLpro and compounds showed that UKR1129266 was the best compound. These results provided a theoretical foundation for future studies of PLpro inhibitors against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Design , Endopeptidases
3.
Biomed Pharmacother ; 154: 113576, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36007279

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease that often occurs in the elderly population. At present, most drugs for AD on the market are single-target drugs, which have achieved certain success in the treatment of AD. However, the efficacy and safety of single-target drugs have not achieved the expected results because AD is a multifactorial disease. Multi-targeted drugs act on multiple factors of the disease network to improve efficacy and reduce adverse reactions. Therefore, the search for effective dual-target or even multi-target drugs has become a new research trend. Many of results found that the dual-target inhibitors of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and acetylcholinesterase (AChE) found from traditional Chinese medicine have a good inhibitory effect on AD with fewer side effects. This article reviews sixty-six compounds extracted from Chinese medicinal herbs, which have inhibitory activity on BACE1 and AChE. This provides a theoretical basis for the further development of these compounds as dual-target inhibitors for the treatment of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Plants, Medicinal , Acetylcholinesterase/metabolism , Aged , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/metabolism , China , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Humans , Neurodegenerative Diseases/drug therapy , Plants, Medicinal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...