Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 30(5): 479-88, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18311589

ABSTRACT

This study focused on the sorption isotherms of 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (p,p'-DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (p,p'-DDE) on different original clays (i.e., zeolite, montmorillonite and attapulgite) and organoclay complexes. Sorption of organic pollutants was determined using gas chromatographic (GC) techniques to investigate the sorption behavior, and characterize the effect of, different organic cations. The original clays only sorbed low amounts of p,p'-DDT and p,p'-DDE, and the sorptive curves can be classified as L-shaped. Organoclays exhibited higher amounts of p,p'-DDT and p,p'-DDE sorption. The p,p'-DDT and p,p'-DDE sorption increased with increasing total organic carbon (OC) content of the organoclays. For hexadecyltrimethylammonium (HDTMA)-modified organoclays, the dominant adsorptive medium showed the partitioning sorption of hydrophobic-hydrophobic interaction, indicating no competitive sorption. The sorptive curves can be classified as C-shaped of constant partition (CP). However, benzyltrimethylammonium (BTMA)-modified organoclays exhibited competitive sorption. The sorption isotherm curves can be classified as S-shaped. The sorptive capacity of the HDTMA-modified organoclays for p,p'-DDT were higher than those for p,p'-DDE, but the BTMA-modified organoclays showed a reverse trend. This can be attributed to the different structures and shapes of organic cations, giving different sorptive mechanisms. The p,p'-DDT and p,p'-DDE sorption onto HDTMA-modified organoclays were caused by chemical interaction, with the BTMA modified organoclays occuring due to physical sorption.


Subject(s)
Aluminum Silicates/chemistry , DDT/chemistry , Clay , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
2.
Environ Geochem Health ; 30(1): 67-77, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17610026

ABSTRACT

Laboratory incubation trials were conducted to investigate the effects of several factors on the persistence as well as the dissipation of three synthetic pyrethroid pesticides in red soils obtained from the Yangtze River Delta region in China. The pyrethroids selected for investigation were cypermethrin, fenvalerate, and deltamethrin, which continue to be used extensively to control pests on farmland in the region despite the concern that they are highly toxic to certain vertebrate and mammalian species. Data from this exploratory study showed that the dissipation half-lives (T (1/2)) tended to correlate with soil pH and soil organic matter contents, but not with soil cation-exchange capacity. The T (1/2) values were seen to be shorter in soil samples fertilized with glucose than without. The rates of pyrethroid dissipation also tended to increase with increasing initial soil concentration, but were largely unaffected by whether the pesticides were present in the soil separately or as a mixture. Another noteworthy observation is that microbial activity appeared to dominate the degradation process. Findings of this type could offer valuable clues for future research directions in reducing pesticide persistence in soil, which in turn could lead to the ultimate reduction of environmental pollution caused by pyrethroid application to farmland in the region.


Subject(s)
Insecticides/analysis , Pesticide Residues/analysis , Pyrethrins/analysis , Soil Pollutants/analysis , Soil/analysis , China , Half-Life , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...