Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(45): 13228-13234, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023524

ABSTRACT

A mild and practical method for synthesizing sulfonyl derivatives, which have a wide range of applications in pharmaceuticals, materials, and organic synthesis, was described through the oxidative functionalization of thiols with DMSO/HBr. The simple conditions, low cost and ready availability of DMSO/HBr, as well as the versatility of the transformations, make this strategy very powerful in synthesizing a variety of sulfonyl derivatives including sulfonamides, sulfonyl fluorides, sulfonyl azides, and sulfonates. Mechanistic studies revealed that DMSO served as the terminal oxidant, and HBr acted as both a nucleophile and a redox mediator to transfer the oxygen atom.

2.
J Am Chem Soc ; 144(29): 13415-13425, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35839515

ABSTRACT

The electrophilic halogenation of arenes is perhaps the simplest method to prepare aryl halides, which are important structural motifs in agrochemicals, materials, and pharmaceuticals. However, the nucleophilicity of arenes is weakened by the electron-withdrawing substituents, whose electrophilic halogenation reactions usually require harsh conditions and lead to limited substrate scopes and applications. Therefore, the halogenation of arenes containing electron-withdrawing groups (EWGs) and complex bioactive compounds under mild conditions has been a long-standing challenge. Herein, we describe Brønsted acid-catalyzed halogenation of arenes with electron-withdrawing substituents under mild conditions, providing an efficient protocol for aryl halides. The hydrogen bonding of Brønsted acid with the protic solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) enables this transformation and thus solves this long-standing problem.


Subject(s)
Electrons , Halogenation , Acids , Catalysis , Hydrogen Bonding
SELECTION OF CITATIONS
SEARCH DETAIL
...