Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 190: 110940, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32151909

ABSTRACT

Herein, we constructed an aptamer-based sensor for the sensitive and highly specific detection of Shigella sonnei via surface enhanced Raman spectroscopy (SERS) analysis. A composite material integrated of the Raman active 4-MBA ligand of the Eu-complex and citrate-stabilized Au nanoparticles (cit-Au NPs) was synthesized and served as both active substrate and Raman reporter. Aptamers targeted to S. Sonnei was then modified onto the surface of this dual-functional material. With the introduction of S. Sonnei, aptamer bound with target with high affinity and specificity, leaving the dual-functional material onto the bacteria. The SERS intensity response showed a strong positive linear correlation (R = 0.9956) with increasing concentrations of S. sonnei (ranging from 10 to 106 cfu/mL). High specificity was achieved at Shigella species (S. dysenteriae, S. flexneri, S. boydii) and other common bacteria (Salmonella typhimurium, Staphylococcus aureus and Escherichia coli). When applied in real samples, the approach showed recoveries from 92.6 to 103.8 %. The designed approach holds great potential for the construction of various aptasensors for the effective and convenient detection of different food hazards.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aptamers, Nucleotide/pharmacology , Gold/pharmacology , Metal Nanoparticles/chemistry , Organometallic Compounds/pharmacology , Shigella/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques , Dimerization , Gold/chemistry , Microbial Sensitivity Tests , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Particle Size , Spectrum Analysis, Raman , Surface Properties
2.
Biosens Bioelectron ; 91: 538-544, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28086124

ABSTRACT

We developed an ultrasensitive luminescence resonance energy transfer (LRET) aptasensor for Ochratoxin A (OTA) detection, using core/shell upconversion nanoparticles (CS-UCNPs) as luminophores. The OTA aptamer was tagged to CS-UCNPs as energy donor and graphene oxide (GO) acted as energy acceptor. The π-π stacking interaction between the aptamer and GO brought CS-UCNPs and GO in close proximity hence initiated the LRET process resulting in quenching of CS-UCNPs luminescence. A linear calibration was obtained between the luminescence intensity and the logarithm of OTA concentration in the range from 0.001ngmL-1 to 250ngmL-1, with a detection limit of 0.001ngmL-1. The aptasensor showed good specificity towards OTA in beer samples. The ultrahigh sensitivity and pronounced robustness in beer sample matrix suggested promising prospect of the aptasensor inpractical applications.


Subject(s)
Aptamers, Nucleotide/chemistry , Beer/analysis , Biosensing Techniques/methods , Luminescent Agents/chemistry , Nanoparticles/chemistry , Ochratoxins/analysis , Erbium/chemistry , Fluorides/chemistry , Limit of Detection , Luminescent Measurements/methods , Models, Molecular , Nanoparticles/ultrastructure , Yttrium/chemistry
3.
Analyst ; 141(13): 3942-61, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27265444

ABSTRACT

Food safety is a global health objective, and foodborne diseases represent a major crisis in health. Techniques that are simple and suitable for fast screening to detect and identify pathogenic factors in the food chain are vital to ensure food safety. At present, a variety of analytical methods have been reported for the detection of pathogenic agents. Whereas the sensitivity of detection and quantification are still important challenges, we expect major advances from new assay formats and synthetic bio-recognition elements, such as aptamers. Owing to the specific folding capability of aptamers in the presence of an analyte, aptasensors have substantially and successfully been exploited for the detection of a wide range of small and large molecules (e.g., toxins, antibiotics, heavy metals, bacteria, viruses) at very low concentrations. Here, we review the use of aptasensors for the development of highly sensitive and affordable detection tools for food analysis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Food Contamination/analysis , Food Safety
4.
Talanta ; 158: 246-253, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27343602

ABSTRACT

A multiplexed, sensitive and specific detection method is highly desirable for the simultaneous detection of several pathogenic bacteria and bio-toxins. In our previous work, multicolor upconversion nanoparticles (UCNPs) via doping with various rare-earth ions to obtain well-separated emission peaks by means of a solvothermal method were synthesized and were successfully applied as luminescence labels in the detection of three pathogenic bacteria. One of the basic achievements of our group has been to establish that the key to increasing the number of simultaneous detection components is the preparation of more UCNPs, the emission peaks of which can be distinguished from each other. According to this vision, NaYF4:Yb0.2, Tm0.02 UCNPs were obtained via a thermal-decomposition protocol, which has a main near-infrared (NIR) UC emission at 804nm under 980nm excitation. The emission peak at 804nm was well-separated from the emission peaks of UCNPs we have reported at 477nm, 542nm, and 660nm. It means both the excitation and the emission of NaYF4:Yb0.2, Tm0.02 UCNPs are located in the NIR spectral range (NIR-to-NIR UC emission), the so-called biological window. This result establishes the basis of achieving simultaneous detection of four components. To confirm the analytical performance of this NaYF4:Yb0.2, Tm0.02 UCNPs, a novel near-infrared magnetic aptasensor for the detection of Ochratoxin A (OTA) was developed using the OTA aptamer-conjugated near-infrared upconversion nanoparticles (apt-UCNPs) and the complementary oligonucleotide-modified magnetic nanoparticles (cDNA-MNPs). The apt-UCNPs and cDNA-MNPs were hybridized to form a poly-network structure of MNP-UCNP nanocomposites. When the target OTA was introduced, the aptamer combined with the priority target and the cDNA-MNPs were replaced. The proposed method achieved a linear range between 0.01 and 100ngmL(-1), with a detection limit as low as 0.005ngmL(-1). Then, we successfully applied this method to measure Ochratoxin A (OTA) in beer samples and the results demonstrated that the method possessed a high sensitivity and good selectivity for the determination of OTA and thus is applicable to the determination of OTA in beer samples. This satisfying result shows that the NaYF4:Yb0.2, Tm0.02 UCNPs we synthesized has a great prospect in multiplexed simultaneous detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...