Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(1): 22, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38227064

ABSTRACT

KEY MESSAGE: The transcriptome is beneficial for dissecting the mechanism of millet in response to low potassium stress and SiSnRK2.6 was identified as a potential target for improving low potassium stress tolerance. Foxtail millet (Setaria italica L.), which originated in China, has high nutrient utilization character. Nevertheless, the molecular mechanism of its tolerance to low potassium stress is largely unclear. In this research, the low potassium tolerant variety "Yugu28" was screened out by low potassium stress treatment, and the transcriptome of "Yugu28" under low potassium stress was comprehensively analyzed. A total of 4254 differentially expressed genes (DEGs) were identified, including 1618 up-regulated and 2636 down-regulated genes, respectively. In addition, there were 302 transcription factor (TF) genes in the DEGs and MYB TFs accounted for the highest proportion, which was 14.9%. After functional analysis of all DEGs, a total of 7 genes involved in potassium transport and potassium ion channels and 50 genes corresponding to hormones were screened. The expression levels of randomly selected 17 DEGs were verified by qRT-PCR and the results coincided well with the RNA-seq analysis, indicating the reliability of our transcriptome data. Moreover, one of the ABA signaling pathway genes, SiSnRK2.6, was identified and selected for further functional verification. Compared with the wild type, transgenic rice with ecotopic expression of SiSnRK2.6 showed remarkably increased root length and root number, indicating that overexpression of SiSnRK2.6 can enhance the resistance of transgenic plants to low potassium stress.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Reproducibility of Results , Gene Expression Profiling , Transcriptome , Potassium
2.
BMC Plant Biol ; 23(1): 31, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36639742

ABSTRACT

BACKGROUND: Auxin performs important functions in plant growth and development processes, as well as abiotic stress. Small auxin-up RNA (SAUR) is the largest gene family of auxin-responsive factors. However, the knowledge of the SAUR gene family in foxtail millet is largely obscure. RESULTS: In the current study, 72 SiSAUR genes were identified and renamed according to their chromosomal distribution in the foxtail millet genome. These SiSAUR genes were unevenly distributed on nine chromosomes and were classified into three groups through phylogenetic tree analysis. Most of the SiSAUR members from the same group showed similar gene structure and motif composition characteristics. Analysis of cis-acting elements showed that many hormone and stress response elements were identified in the promoter region of SiSAURs. Gene replication analysis revealed that many SiSAUR genes were derived from gene duplication events. We also found that the expression of 10 SiSAURs was induced by abiotic stress and exogenous hormones, which indicated that SiSAUR genes may participated in complex physiological processes. CONCLUSIONS: Overall, these results will be valuable for further studies on the biological role of SAUR genes in foxtail development and response to stress conditions and may shed light on the improvement of the genetic breeding of foxtail millet.


Subject(s)
Setaria Plant , Setaria Plant/genetics , Setaria Plant/metabolism , Indoleacetic Acids/metabolism , RNA/metabolism , Multigene Family , Phylogeny , Plant Breeding , Gene Expression Regulation, Plant , Plant Proteins/metabolism
3.
Theor Appl Genet ; 134(2): 557-572, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33128073

ABSTRACT

KEY MESSAGE: Using a fixed RIL population derived from a widely used foxtail millet backbone breeding line and an elite cultivar, we constructed a high-density bin map and identified six novel multi-environment effect QTLs and seven candidate genes for dwarf phenotype. Plant height is an important trait that determines tradeoffs between competition and resource allocation, which is crucial for yield potential. To improve the C4 model plant foxtail millet (Setaria italica) productivity, it is necessary to isolate plant height-related genes that contribute to ideal plant architecture in breeding. In the present study, we generated a foxtail millet population of 333 recombinant inbred lines (RILs) derived from a cross between a backbone line Ai 88 and an elite cultivar Liaogu 1. We evaluated plant height in 13 environmental conditions across 4 years, the mean plant height of the RIL population ranged from 89.5 to 149.9 cm. Using deep re-sequencing data, we constructed a high-density bin map with 3744 marker bins. Quantitative trait locus (QTL) mapping identified 26 QTLs significantly associated with plant height. Of these, 13 QTLs were repeatedly detected under multiple environments, including six novel QTLs that have not been reported before. Seita.1G242300, a gene encodes gibberellin 2-oxidase-8, which was detected in nine environments in a 1.54-Mb interval of qPH1.3, was considered as an important candidate gene. Moreover, other six genes involved in GA biosynthesis or signaling pathways, and fifteen genes encode F-box domain proteins which might function as E3 ligases, were also considered as candidate genes in different QTLs. These QTLs and candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height, and the linked markers will be useful for marker-assistant selection of varieties with ideal plant architecture and high yield potential.


Subject(s)
Chromosome Mapping/methods , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Plant Breeding , Plant Proteins/metabolism , Quantitative Trait Loci , Setaria Plant/genetics , Genome, Plant , High-Throughput Nucleotide Sequencing , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Setaria Plant/anatomy & histology , Setaria Plant/growth & development
4.
Opt Lett ; 45(8): 2291-2294, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32287216

ABSTRACT

We report on the development and application of a novel, to the best of our knowledge, all-solid-state tunable narrow-linewidth 226 nm UV laser system. The laser system consists of three parts: a tunable single-frequency Ti:sapphire 787 nm laser, a single-frequency long-pulse-width flattop-shaped 532 nm laser, and a nonlinear frequency transformation system. The 532 nm laser is a sum-frequency mixed with the second harmonic of the 787 nm laser to produce the 226 nm laser. The maximum output pulse energy at 226 nm is 3 mJ. Nitric oxide planar laser-induced fluorescence velocimetry is demonstrated in the China Aerodynamics Research and Development Center's FD14 hypersonic shock tunnel using this 226 nm laser system. It is proven that this laser is convenient for high-resolution molecular tagging fluorescence spectroscopy.

5.
Appl Opt ; 57(9): 2020-2024, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29603988

ABSTRACT

We demonstrated a passively Q-switched solid-state Tm:YAG laser using topological insulator (TI) Bi2Te3 as the saturable absorber (SA) for the first time, to the best of our knowledge. The Q-switched laser pulses were obtained with the minimum pulse width of 382 ns, the maximum pulse energy of 4.8 µJ, the maximum average output power of 272 mW, and a pulse repetition rate of 57.67 kHz. The results indicate that Bi2Te3 can be a promising kind of saturable absorber in the 2 µm wavelength region.

6.
Opt Express ; 26(5): 5758-5768, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529777

ABSTRACT

We demonstrate an enhancement mechanism and thermal model for intra-cavity pumped lasers, where resonance enhancement in intra-cavity pumped Ho laser was achieved by manipulating the wavelength-drift nature of the Tm laser for the first time. Optical conversion efficiency of 37.5% from an absorbed 785 nm diode laser to a Ho laser was obtained with a maximum output power of 7.51 W at 2122 nm, which is comparable to the conversion efficiency in 1.9 µm LD pumped Ho lasers. Meanwhile, more severe thermal effects in the Ho-doped gain medium than the Tm-doped one at high power operation were verified based on the built thermal model. This work benefits the design or evaluation of intra-cavity pumped lasers, and the resonance enhancement originated from the difference in reabsorption loss between stark levels at the lasing manifolds of quasi-three-level rare-earth ions has great interest to improve the existing intra-cavity pumped lasers or explore novel lasers.

7.
Opt Lett ; 41(17): 3952-5, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27607945

ABSTRACT

We first demonstrate an efficient Ho:YAG laser intra-cavity pumped by a narrowband-diode-pumped Tm:YAG laser. The pump wavelength of the laser diode was selected according to the excitation peak which is also one of the absorption peaks of a 3.5 at. % Tm:YAG crystal and was locked by volume Bragg gratings. In the Tm laser experiment, a maximum output power of 11.12 W, corresponding to a slope efficiency of 51.6%, was obtained. In the Ho laser experiment, a maximum output power of 8.03 W at 2122 nm with a slope efficiency of 38% was obtained for 24.96 W of diode pump power incident on the Tm:YAG rod.

8.
J Exp Bot ; 66(22): 7241-53, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26357884

ABSTRACT

The recently published genome of Brassica napus offers for the first time the opportunity to gain insights into the genomic organization and the evolution of miRNAs in oilseed rape. In this study, 12 small RNA libraries from two B. napus cultivars (Tapidor and Ningyou7) and their four double-haploid lines were sequenced, employing the newly sequenced B. napus genome, together with genomes of its progenitors Brassica rapa and Brassica oleracea. A total of 645 miRNAs including 280 conserved and 365 novel miRNAs were identified. Comparative analysis revealed a high level of genomic conservation of MIRNAs (75.9%) between the subgenomes of B. napus and its two progenitors' genomes, and MIRNA lost/gain events (133) occurred in B. napus after its speciation. Furthermore, significant partitioning of miRNA expressions between the two subgenomes in B. napus was detected. The data of degradome sequencing, miRNA-mediated cleavage, and expression analyses support specific interactions between miRNAs and their targets in the modulation of diverse physiological processes in roots and leaves, as well as in biosynthesis of, for example, glucosinolates and lipids in oilseed rape. These data provide a first genome-wide view on the origin, evolution, and genomic organization of B. napus MIRNAs.


Subject(s)
Brassica napus/genetics , MicroRNAs/biosynthesis , RNA, Plant/biosynthesis , Brassica rapa/genetics , Chromosome Mapping , Evolution, Molecular , Genome, Plant , Species Specificity
9.
BMC Plant Biol ; 15: 149, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26084405

ABSTRACT

BACKGROUND: Miniature inverted repeat transposable elements (MITEs) are important components of eukaryotic genomes, with hundreds of families and many copies, which may play important roles in gene regulation and genome evolution. However, few studies have investigated the molecular mechanisms involved. In our previous study, a Tourist-like MITE, Monkey King, was identified from the promoter region of a flowering time gene, BnFLC.A10, in Brassica napus. Based on this MITE, the characteristics and potential roles on gene regulation of the MITE family were analyzed in Brassicaceae. RESULTS: The characteristics of the Tourist-like MITE family Monkey King in Brassicaceae, including its distribution, copies and insertion sites in the genomes of major Brassicaceae species were analyzed in this study. Monkey King was actively amplified in Brassica after divergence from Arabidopsis, which was indicated by the prompt increase in copy number and by phylogenetic analysis. The genomic variations caused by Monkey King insertions, both intra- and inter-species in Brassica, were traced by PCR amplification. Genomic sequence analysis showed that most complete Monkey King elements are located in gene-rich regions, less than 3kb from genes, in both the B. rapa and A. thaliana genomes. Sixty-seven Brassica expressed sequence tags carrying Monkey King fragments were also identified from the NCBI database. Bisulfite sequencing identified specific DNA methylation of cytosine residues in the Monkey King sequence. A fragment containing putative TATA-box motifs in the MITE sequence could bind with nuclear protein(s) extracted from leaves of B. napus plants. A Monkey King-related microRNA, bna-miR6031, was identified in the microRNA database. In transgenic A. thaliana, when the Monkey King element was inserted upstream of 35S promoter, the promoter activity was weakened. CONCLUSION: Monkey King, a Brassicaceae Tourist-like MITE family, has amplified relatively recently and has induced intra- and inter-species genomic variations in Brassica. Monkey King elements are most abundant in the vicinity of genes and may have a substantial effect on genome-wide gene regulation in Brassicaceae. Monkey King insertions potentially regulate gene expression and genome evolution through epigenetic modification and new regulatory motif production.


Subject(s)
Brassicaceae/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Inverted Repeat Sequences/genetics , Arabidopsis/genetics , Base Composition/genetics , Base Sequence , Chromosome Mapping , Computer Simulation , DNA Methylation/genetics , Electrophoretic Mobility Shift Assay , Genome, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Nuclear Proteins/metabolism , Phylogeny , Plants, Genetically Modified , Polymorphism, Genetic , Promoter Regions, Genetic/genetics , Species Specificity
10.
Methods Mol Biol ; 1245: 91-9, 2015.
Article in English | MEDLINE | ID: mdl-25373751

ABSTRACT

RFLP (Restriction Fragment Length Polymorphism) is a commonly used technique that can be used for genotyping for nearly all organisms, including plants, animals, and humans. RFLP is widely used in genetic and genomic research, such as genome mapping and gene identification. The technique involves DNA digestion, gel electrophoresis, capillary transfer of DNA, and southern hybridization. In this chapter, we aim to give a detailed introduction of how to perform RFLPs for identifying genotypes.


Subject(s)
Genotyping Techniques/methods , Polymorphism, Restriction Fragment Length/genetics , Blotting, Southern , DNA Probes/metabolism , DNA, Plant/genetics , Membranes, Artificial , Nucleic Acid Hybridization , Radioisotopes
11.
BMC Plant Biol ; 12: 238, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23241244

ABSTRACT

BACKGROUND: Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. RESULTS: We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. CONCLUSIONS: Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in the TN-DH population, (ii) the allelic diversity caused by MITE insertion/deletion upstream of BnFLC.A10 is one of the major causes of differentiation of winter and spring genotypes in rapeseed and (iii) winter rapeseed has evolved from spring genotypes through selection pressure at the BnFLC.A10 locus, enabling expanded cultivation of rapeseed along the route of Brassica domestication.


Subject(s)
Brassica napus/genetics , DNA Transposable Elements , Quantitative Trait Loci/physiology , Alleles , Base Sequence , Brassica napus/physiology , Chromosome Mapping , Cloning, Molecular , Flowers , Genes, Plant , Genotype , Haplotypes , INDEL Mutation , Molecular Sequence Data , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...