Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937432

ABSTRACT

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Subject(s)
COVID-19 , Cullin Proteins , HSP90 Heat-Shock Proteins , SARS-CoV-2 , Ubiquitination , Virus Replication , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , Virus Replication/drug effects , Virus Replication/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , COVID-19/immunology , Ubiquitination/genetics , HEK293 Cells , Benzoquinones/pharmacology , Protein Stability , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Lactams, Macrocyclic
2.
Nat Rev Rheumatol ; 20(6): 323-346, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740860

ABSTRACT

Articular cartilage was expected to be one of the first successfully engineered tissues, but today, cartilage repair products are few and they exhibit considerable limitations. For example, of the cell-based products that are available globally, only one is marketed for non-knee indications, none are indicated for severe osteoarthritis or rheumatoid arthritis, and only one is approved for marketing in the USA. However, advances in cartilage tissue engineering might now finally lead to the development of new cartilage repair products. To understand the potential in this field, it helps to consider the current landscape of tissue-engineered products for articular cartilage repair and particularly cell-based therapies. Advances relating to cell sources, bioactive stimuli and scaffold or scaffold-free approaches should now contribute to progress in therapeutic development. Engineering for an inflammatory environment is required because of the need for implants to withstand immune challenge within joints affected by osteoarthritis or rheumatoid arthritis. Bringing additional cartilage repair products to the market will require an understanding of the translational vector for their commercialization. Advances thus far can facilitate the future translation of engineered cartilage products to benefit the millions of patients who suffer from cartilage injuries and arthritides.


Subject(s)
Cartilage, Articular , Tissue Engineering , Tissue Engineering/methods , Humans , Tissue Scaffolds , Osteoarthritis/therapy , Translational Research, Biomedical/methods , Arthritis, Rheumatoid/therapy , Animals
3.
Eur J Med Chem ; 268: 116281, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38432058

ABSTRACT

Aberrant signaling via fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) has been identified as a driver of tumorigenesis and the development of many solid tumors, making FGFR4 is a promising target for anticancer therapy. Herein, we designed and synthesized a series of bis-acrylamide covalent FGFR4 inhibitors and evaluated their inhibitory activity against FGFRs, FGFR4 mutants, and their antitumor activity. CXF-007, verified by mass spectrometry and crystal structures to form covalent bonds with Cys552 of FGFR4 and Cys488 of FGFR1, exhibited stronger selectivity and potent inhibitory activity for FGFR4 and FGFR4 cysteine mutants. Moreover, CXF-007 exhibited significant antitumor activity in hepatocellular carcinoma cell lines and breast cancer cell lines through sustained inhibition of the FGFR4 signaling pathway. In summary, our study highlights a novel covalent FGFR4 inhibitor, CXF-007, which has the potential to overcome drug-induced FGFR4 mutations and might provide a new strategy for future anticancer drug discovery.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Receptor, Fibroblast Growth Factor, Type 4 , Antineoplastic Agents/chemistry , Signal Transduction , MCF-7 Cells , Phosphorylation , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor
4.
Structure ; 32(4): 467-475.e3, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38309263

ABSTRACT

Retinoic acid-related orphan receptor gamma (RORγ) plays critical roles in regulating various biological processes and has been linked to immunodeficiency disorders and cancers. DNA recognition is essential for RORγ to exert its functions. However, the underlying mechanism of the DNA binding by RORγ remains unclear. In this study, we present the crystal structure of the complex of RORγ1 DNA-binding domain (RORγ1-DBD)/direct repeat DNA element DR2 at 2.3 Å resolution. We demonstrate that RORγ1-DBD binds the DR2 motif as a homodimer, with the C-terminal extension (CTE) region of RORγ1-DBD contributing to the DNA recognition and the formation of dimeric interface. Further studies reveal that REV-ERB-DBD and RXR-DBD, also bind the DR2 site as a homodimer, while NR4A2-DBD binds DR2 as a monomer. Our research uncovers a binding mechanism of RORγ1 to the DR2 site and provides insights into the biological functions of RORγ1 and the broader RORs subfamily.


Subject(s)
DNA-Binding Proteins , DNA , DNA-Binding Proteins/chemistry , DNA/metabolism , Tretinoin , Binding Sites
5.
Nucleic Acids Res ; 52(5): 2711-2723, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38281192

ABSTRACT

Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.


Subject(s)
DNA , Histone Deacetylases , MEF2 Transcription Factors , Repressor Proteins , DNA/chemistry , DNA/metabolism , Gene Expression Regulation , Genes, Reporter , MEF2 Transcription Factors/chemistry , MEF2 Transcription Factors/metabolism , Myogenic Regulatory Factors/chemistry , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Humans , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism
6.
Commun Chem ; 7(1): 3, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172256

ABSTRACT

Acquired drug resistance poses a challenge for single-target FGFR inhibitors, leading to the development of dual- or multi-target FGFR inhibitors. Sulfatinib is a multi-target kinase inhibitor for treating neuroendocrine tumors, selectively targeting FGFR1/CSF-1R. To elucidate the molecular mechanisms behind its binding and kinase selectivity, we determined the crystal structures of sulfatinib with FGFR1/CSF-1R. The results reveal common structural features and distinct conformational adaptability of sulfatinib in response to FGFR1/CSF-1R binding. Further biochemical and structural analyses disclose sensitivity of sulfatinib to FGFR/CSF-1R gatekeeper mutations. The insensitivity of sulfatinib to FGFR gatekeeper mutations highlights the indispensable interactions with the hydrophobic pocket for FGFR selectivity, whereas the rotatory flexibility may enable sulfatinib to overcome CSF-1RT663I. This study not only sheds light on the structural basis governing sulfatinib's FGFR/CSF-1R inhibition, but also provides valuable insights into the rational design of dual- or multi-target FGFR inhibitors with selectivity for CSF-1R and sensitivity to gatekeeper mutations.

7.
Comput Struct Biotechnol J ; 21: 5712-5718, 2023.
Article in English | MEDLINE | ID: mdl-38074469

ABSTRACT

c-Met has been an attractive target of prognostic and therapeutic studies in various cancers. TPX-0022 is a macrocyclic inhibitor of c-Met, c-Src and CSF1R kinases and is currently in phase I/II clinical trials in patients with advanced solid tumors harboring MET gene alterations. In this study, we determined the co-crystal structures of the c-Met/TPX-0022 and c-Src/TPX-0022 complexes to help elucidate the binding mechanism. TPX-0022 binds to the ATP pocket of c-Met and c-Src in a local minimum energy conformation and is stabilized by hydrophobic and hydrogen bond interactions. In addition, TPX-0022 exhibited potent activity against the resistance-relevant c-Met L1195F mutant and moderate activity against the c-Met G1163R, F1200I and Y1230H mutants but weak activity against the c-Met D1228N and Y1230C mutants. Overall, our study reveals the structural mechanism underlying the potency and selectivity of TPX-0022 and the ability to overcome acquire resistance mutations and provides insight into the development of selective c-Met macrocyclic inhibitors.

8.
Nat Commun ; 14(1): 4300, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463921

ABSTRACT

Mitochondrial apoptosis is strictly controlled by BCL-2 family proteins through a subtle network of protein interactions. The tumor suppressor protein p53 triggers transcription-independent apoptosis through direct interactions with BCL-2 family proteins, but the molecular mechanism is not well understood. In this study, we present three crystal structures of p53-DBD in complex with the anti-apoptotic protein BCL-2 at resolutions of 2.3-2.7 Å. The structures show that two loops of p53-DBD penetrate directly into the BH3-binding pocket of BCL-2. Structure-based mutations at the interface impair the p53/BCL-2 interaction. Specifically, the binding sites for p53 and the pro-apoptotic protein Bax in the BCL-2 pocket are mostly identical. In addition, formation of the p53/BCL-2 complex is negatively correlated with the formation of BCL-2 complexes with pro-apoptotic BCL-2 family members. Defects in the p53/BCL-2 interaction attenuate p53-mediated cell apoptosis. Overall, our study provides a structural basis for the interaction between p53 and BCL-2, and suggests a molecular mechanism by which p53 regulates transcription-independent apoptosis by antagonizing the interaction of BCL-2 with pro-apoptotic BCL-2 family members.


Subject(s)
Proto-Oncogene Proteins c-bcl-2 , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , bcl-X Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis/physiology
9.
Comput Struct Biotechnol J ; 21: 3149-3157, 2023.
Article in English | MEDLINE | ID: mdl-37287811

ABSTRACT

Farnesoid X receptor (FXR) is a ligand-activated transcription factor known as bile acid receptor (BAR). FXR plays critical roles in various biological processes, including metabolism, immune inflammation, liver regeneration and liver carcinogenesis. FXR forms a heterodimer with the retinoid X receptor (RXR) and binds to diverse FXR response elements (FXREs) to exert its various biological functions. However, the mechanism by which the FXR/RXR heterodimer binds the DNA elements remains unclear. In this study, we aimed to use structural, biochemical and bioinformatics analyses to study the mechanism of FXR binding to the typical FXRE, such as the IR1 site, and the heterodimer interactions in the FXR-DBD/RXR-DBD complex. Further biochemical assays showed that RAR, THR and NR4A2 do not form heterodimers with RXR when bound to the IR1 sites, which indicates that IR1 may be a unique binding site for the FXR/RXR heterodimer. Our studies may provide a further understanding of the dimerization specificity of nuclear receptors.

10.
Nat Commun ; 13(1): 6234, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266304

ABSTRACT

The aryl hydrocarbon receptor (AHR), a member of the basic helix-loop-helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors, plays important roles in regulating xenobiotic metabolism, cellular differentiation, stem cell maintenance, as well as immunity. More recently, AHR has gained significant interest as a drug target for the development of novel cancer immunotherapy drugs. Detailed understanding of AHR-ligand binding has been hampered for decades by the lack of a three-dimensional structure of the AHR PAS-B domain. Here, we present multiple crystal structures of the Drosophila AHR PAS-B domain, including its apo, ligand-bound, and AHR nuclear translocator (ARNT) PAS-B-bound forms. Together with biochemical and cellular assays, our data reveal structural features of the AHR PAS-B domain, provide insights into the mechanism of AHR ligand binding, and provide the structural basis for the future development of AHR-targeted therapeutics.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Xenobiotics , Ligands , Basic Helix-Loop-Helix Transcription Factors/metabolism , Protein Binding , Helix-Loop-Helix Motifs
11.
Biochem Biophys Res Commun ; 605: 9-15, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35306364

ABSTRACT

Fumarates (fumaric acid esters), primarily dimethyl fumarate (DMF) and monoethyl fumarate (MEF) and its salts, are orally administered systemic agents used for the treatment of psoriasis and multiple sclerosis. It is widely believed that the pharmaceutical activities of fumarates are exerted through the Keap1-Nrf2 pathway. Although it has been revealed that DMF and MEF differentially modify specific Keap1 cysteine residues and result in the differential activation of Nrf2, how the modification of DMF and MEF impacts the biochemical properties of Keap1 has not been well characterized. Here, we found that both DMF and MEF can only modify the BTB domain of Keap1 and that only C151 is accessible for covalent binding in vitro. Dynamic fluorescence scanning (DSF) assays showed that the modification of DMF to Keap1 BTB increased its thermal stability, while the modification of MEF dramatically decreased its thermal stability. Further crystal structures revealed no significant conformational variation between the DMF-modified and MEF-modified BTBs. Overall, our biochemical and structural study provides a better understanding of the covalent modification of fumarates to Keap1 and may suggest fundamentally different mechanisms adopted by fumarates in regulating the Keap1-Nrf2 pathway.


Subject(s)
Dimethyl Fumarate , NF-E2-Related Factor 2 , Dimethyl Fumarate/pharmacology , Fumarates/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Protein Binding
13.
Biochem Biophys Res Commun ; 598: 15-19, 2022 04 02.
Article in English | MEDLINE | ID: mdl-35151199

ABSTRACT

Ponatinib is a multi-target tyrosine kinase inhibitor that targets ABL, SRC, FGFR, and so on. It was designed to overcome the resistance of BCR-ABL mutation to imatinib, especially the gatekeeper mutation ABLT315I. The molecular mechanism by which ponatinib overcomes mutations of BCR-ABL and some other targets has been explained, but little information is known about the characteristics of ponatinib binding to SRC. Here, we showed that ponatinib inhibited wild type SRC kinase but failed to inhibit SRC gatekeeper mutants in both biochemical and cellular assays. We determined the crystal structure of ponatinib in complex with the SRC kinase domain. In addition, by structural analysis, we provided a possible explanation for why ponatinib showed different effects on SRC and other kinases with gatekeeper mutations. The resistance mechanism of SRC gatekeeper mutations to ponatinib may provide meaningful information for designing inhibitors against SRC family kinases in the future.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyridazines/pharmacology , src-Family Kinases/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Imidazoles/metabolism , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-hck/chemistry , Proto-Oncogene Proteins c-hck/metabolism , Pyridazines/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
14.
J Mol Biol ; 434(5): 167426, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34973238

ABSTRACT

FOXM1 is an essential proliferation-associated transcription factor that controls the activation of a number of cell cycle regulatory genes. Unlike other forkhead box (FOX) transcription factors, FOXM1 has been shown to prefer binding tandem regulatory DNA sites. However, the underlying reason for such preference is not clear. Here, we showed that the tandem DNA motif, named DIV2, is widely distributed in the promoter region of FOXM1 target genes. The binding of FOXM1 on the DIV2 site differs dramatically from other sites, which is in a highly cooperative fashion, with a much enhanced thermal stability and can be clearly detected by EMSA. The crystal structure of FOXM1 in complex with the DIV2 DNA reveals that the cooperative binding is likely to be driven by intermolecular protein-protein interactions (PPIs). Further half-site spacer insertion assays showed that FOXM1 can bind another site, DIV0, in a similar manner to the DIV2 site. Given the high occurrence of the DIV2 and DIV0 sites in FOXM1 target genes, our results suggest that FOXM1 prefers tandem DNA sites to enable cooperative DNA recognition, and such binding characteristics may further confer its specificity during transcriptional regulation.


Subject(s)
Forkhead Box Protein M1 , Promoter Regions, Genetic , Binding Sites , Crystallography , DNA/chemistry , Forkhead Box Protein M1/chemistry , Forkhead Box Protein M1/genetics , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic/genetics
15.
Biochem Biophys Res Commun ; 595: 1-6, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35091108

ABSTRACT

Farnesoid X receptor (FXR) is a bile acid-related nuclear receptor and is considered a promising target to treat several liver disorders. Cilofexor is a selective FXR agonist and has already entered phase III trials in primary sclerosing cholangitis (PSC) patients. Pruritis caused by cilofexor treatment is dose dependent. The binding characteristics of cilofexor with FXR and its pruritogenic mechanism remain unclear. In our research, the affinity of cilofexor bound to FXR was detected using an isothermal titration calorimetry (ITC) assay. The binding mechanism between cilofexor and FXR-LBD is explained by the cocrystal structure of the FXR/cilofexor complex. Structural models indicate the possibility that cilofexor activates Mas-related G protein-coupled receptor X4 (MRGPRX4) or G protein-coupled bile acid receptor 1 (GPBAR1), leading to pruritus. In summary, our analyses provide a molecular mechanism of cilofexor binding to FXR and provide a possible explanation for the dose-dependent pruritis of cilofexor.


Subject(s)
Azetidines/chemistry , Isonicotinic Acids/chemistry , Molecular Docking Simulation , Protein Domains , Receptors, Cytoplasmic and Nuclear/chemistry , Azetidines/metabolism , Azetidines/pharmacology , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Binding Sites , Binding, Competitive , Calorimetry/methods , Crystallization , Humans , Hydrogen Bonding , Isonicotinic Acids/metabolism , Isonicotinic Acids/pharmacology , Isoxazoles/chemistry , Isoxazoles/metabolism , Isoxazoles/pharmacology , Ligands , Molecular Structure , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
16.
Commun Chem ; 5(1): 5, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-36697561

ABSTRACT

FIIN-2, TAS-120 (Futibatinib) and PRN1371 are highly potent pan-FGFR covalent inhibitors targeting the p-loop cysteine of FGFR proteins, of which TAS-120 and PRN1371 are currently in clinical trials. It is critical to analyze their target selectivity and their abilities to overcome gatekeeper mutations. In this study, we demonstrate that FIIN-2 and TAS-120 form covalent adducts with SRC, while PRN1371 does not. FIIN-2 and TAS-120 inhibit SRC and YES activities, while PRN1371 does not. Moreover, FIIN-2, TAS-120 and PRN1371 exhibit different potencies against different FGFR gatekeeper mutants. In addition, the co-crystal structures of SRC/FIIN-2, SRC/TAS-120 and FGFR4/PRN1371 complexes reveal structural basis for kinase targeting and gatekeeper mutations. Taken together, our study not only provides insight into the potency and selectivity of covalent pan-FGFR inhibitors, but also sheds light on the development of next-generation FGFR covalent inhibitors with high potency, high selectivity, and stronger ability to overcome gatekeeper mutations.

17.
Commun Chem ; 5(1): 36, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-36697897

ABSTRACT

The fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) signaling pathways play critical roles in a variety of cancers, such as hepatocellular carcinoma (HCC). FGFR4 is recognized as a promising target to treat HCC. Currently, all FGFR covalent inhibitors target one of the two cysteines (Cys477 and Cys552). Here, we designed and synthesized a dual-warhead covalent FGFR4 inhibitor, CXF-009, targeting Cys477 and Cys552 of FGFR4. We report the cocrystal structure of FGFR4 with CXF-009, which exhibits a dual-warhead covalent binding mode. CXF-009 exhibited stronger selectivity for FGFR4 than FGFR1-3 and other kinases. CXF-009 can also potently inhibit the single cystine mutants, FGFR4(C477A) and FGFR4(C552A), of FGFR4. In summary, our study provides a dual-warhead covalent FGFR4 inhibitor that can covalently target two cysteines of FGFR4. CXF-009, to our knowledge, is the first reported inhibitor that forms dual-warhead covalent bonds with two cysteine residues in FGFR4. CXF-009 also has the potential to overcome drug induced resistant FGFR4 mutations and might serve as a lead compound for future anticancer drug discovery.

18.
Commun Chem ; 5(1): 100, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36698015

ABSTRACT

Fibroblast growth factor receptor (FGFR) dysregulation is involved in a variety of tumorigenesis and development. Cholangiocarcinoma is closely related with FGFR aberrations, and pemigatinib is the first drug approved to target FGFR for the treatment of cholangiocarcinoma. Herein, we undertake biochemical and structural analysis on pemigatinib against FGFRs as well as gatekeeper mutations. The results show that pemigatinib is a potent and selective FGFR1-3 inhibitor. The extensive network of hydrogen bonds and van der Waals contacts found in the FGFR1-pemigatinib binding mode accounts for the high potency. Pemigatinib also has excellent potency against the Val-to-Ile gatekeeper mutation but less potency against the Val-to-Met/Phe gatekeeper mutation in FGFR. Taken together, the inhibitory and structural profiles exemplified by pemigatinib may help to thwart Val-to-Ile gatekeeper mutation-based resistance at earlier administration and to advance the further design and improvement for inhibitors toward FGFRs with gatekeeper mutations.

19.
Nucleic Acids Res ; 49(18): 10235-10249, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34551426

ABSTRACT

Forkhead box (FOX) proteins are an evolutionarily conserved family of transcription factors that play numerous regulatory roles in eukaryotes during developmental and adult life. Dysfunction of FOX proteins has been implicated in a variety of human diseases, including cancer, neurodevelopment disorders and genetic diseases. The FOX family members share a highly conserved DNA-binding domain (DBD), which is essential for DNA recognition, binding and function. Since the first FOX structure was resolved in 1993, >30 FOX structures have been reported to date. It is clear now that the structure and DNA recognition mechanisms vary among FOX members; however, a systematic review on this aspect is lacking. In this manuscript, we present an overview of the mechanisms by which FOX transcription factors bind DNA, including protein structures, DNA binding properties and disease-causing mutations. This review should enable a better understanding of FOX family transcription factors for basic researchers and clinicians.


Subject(s)
DNA/metabolism , Forkhead Transcription Factors/metabolism , Neurodevelopmental Disorders/metabolism , Humans , Molecular Structure , Protein Binding
20.
Nat Commun ; 12(1): 2280, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863900

ABSTRACT

The tumor suppressor p53 is mutated in approximately half of all human cancers. p53 can induce apoptosis through mitochondrial membrane permeabilization by interacting with and antagonizing the anti-apoptotic proteins BCL-xL and BCL-2. However, the mechanisms by which p53 induces mitochondrial apoptosis remain elusive. Here, we report a 2.5 Å crystal structure of human p53/BCL-xL complex. In this structure, two p53 molecules interact as a homodimer, and bind one BCL-xL molecule to form a ternary complex with a 2:1 stoichiometry. Mutations at the p53 dimer interface or p53/BCL-xL interface disrupt p53/BCL-xL interaction and p53-mediated apoptosis. Overall, our current findings of the bona fide structure of p53/BCL-xL complex reveal the molecular basis of the interaction between p53 and BCL-xL, and provide insight into p53-mediated mitochondrial apoptosis.


Subject(s)
Apoptosis/genetics , Mitochondria/physiology , Tumor Suppressor Protein p53/ultrastructure , bcl-X Protein/ultrastructure , Cell Line, Tumor , Crystallography, X-Ray , Humans , Molecular Docking Simulation , Mutation , Protein Binding/genetics , Protein Multimerization/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/isolation & purification , Tumor Suppressor Protein p53/metabolism , bcl-X Protein/genetics , bcl-X Protein/isolation & purification , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...