Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 20(2): 1359-1370, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32742371

ABSTRACT

Asarum is frequently applied in combination with other agents for prescriptions in practices of Traditional Chinese Medicine. A number of studies have previously indicated that asarum treatment induces lung toxicity by triggering inflammation. However, the potential effects of asarum in the liver and the underlying mechanisms have remained largely elusive. Therefore, transcriptomics and metabolomics approaches were used in the present study to examine the mechanisms of the hepatotoxicity of asarum. Specifically, mRNA and metabolites were obtained from rat liver samples following intragastric administration of asarum powder. RNA sequencing analysis was subsequently performed to screen for differentially expressed genes (DEGs), and a total of 434 DEGs were identified in liver tissue samples, 214 of which were upregulated and 220 were downregulated. Pathway enrichment analysis found that these genes were particularly enriched in processes including the regulation of p53 signaling, metabolic pathways and bile secretion. To investigate potential changes to the metabolic profile as a result of asarum treatment, a metabolomics analysis was performed, which detected 14 significantly altered metabolites in rat liver samples by gas chromatography-mass spectrometry. These metabolites were predominantly members of the taurine, hypotaurine and amino acid metabolic pathways. Metscape network analyses were subsequently performed to integrate the transcriptomics and metabolomics data. Integrative analyis revealed that the DEGs and metabolites were primarily associated with bile acid biosynthesis, amino acid metabolism and the p53 signaling pathway. Taken together, these results provide novel insight into the mechanism of asarum-mediated hepatotoxicity, which may potentially aid the clinical diagnosis and future therapeutic intervention of asarum poisoning.

2.
Article in English | MEDLINE | ID: mdl-30245729

ABSTRACT

Objective. Asarum is widely used in clinical practice of Chinese medicine in the treatment of respiratory diseases. Many toxic ingredients (safrole, etc.) had been found in Asarum that show multiple visceral toxicities. In this study, we performed systematic investigation of expression profiles of genes to take a new insight into unclear mechanism of Asarum toxicities in lung. Methods. mRNAs were extracted from lungs of rats after intragastric administration with/without Asarum powders, and microarray assays were applied to investigate gene expression profiles. Differentially expressed genes with significance were selected to carry out GO analysis. Subsequently, quantitative PCRs were performed to verify the differential expression of Tmprss6, Prkag3, Nptx2, Antxr11, Klk11, Rag2, Olr77, Cd7, Il20, LOC69, C6, Ccl20, LOC68, and Cd163 in lung. Changes of Ampk, Bcl2, Caspase 3, Il1, Il20, Matriptase2, Nfκb, Nptx2, and Rag2 in the lung on protein level were verified by western blotting and immunohistochemistry. Results. Compared with control group, the estimated organ coefficients were relatively increased in Asarum group. Results of GO analysis showed that a group of immune related genes in lung were expressed abnormally. The result of PCRs showed that Ccl20 was downregulated rather than other upregulated genes in the Asarum group. Western blotting and immunohistochemistry images showed that Asarum can upregulate the expression of Ampk, Caspase 3, Il1, Il20, Matriptase2, Nfκb, and Rag2 and downregulate the expression of Bcl2 in lung. Conclusion. Our data suggest that expressions of immune related genes in lung were selectively altered by Asarum. Therefore, inflammatory response was active, by regulating Caspase 3, Il1, Il20, Matriptase2, Nfκb, Rag2, Tmprss6, Prkag3, Nptx2, Antxr1, Klk11, Olr77, Cd7, LOC69, C6, LOC68, Cd163, Ampk, Bcl2, and Ccl20. Our study indicated that inflammatory factors take effect in lung toxicity caused by Asarum, which provides a new insight into molecular mechanism of Asarum toxicities in lung.

SELECTION OF CITATIONS
SEARCH DETAIL
...