Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 751
Filter
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 426-434, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970517

ABSTRACT

OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder in overweight and obese children, and its etiology and pathogenesis remain unclear, lacking effective preventive and therapeutic measures. This study aims to explore the association between whole blood copper, zinc, calcium, magnesium and iron levels and NAFLD in overweight and obese children aged 6 to 17 years, providing a scientific basis for the prevention and intervention of early NAFLD in overweight and obese children. METHODS: A cross-sectional study design was used to collect relevant data from overweight and obese children who visited the Hunan Children's Hospital from January 2019 to December 2021 through questionnaire surveys. Fasting blood samples were collected from the subjects, and various indicators such as blood glucose, blood lipid, and mineral elements were detected. All children were divided into an overweight group (n=400) and a NAFLD group (n=202). The NAFLD group was divided into 2 subgroups according to the ALT level: A non-alcoholic fatty liver (NAFL) group and a non-alcoholic steatohepatitis (NASH) group. Logistic regression analysis was used to analyze the association between minerals (copper, zinc, calcium, magnesium, and iron) and NAFLD, NAFL and NASH. RESULTS: A total of 602 subjects were included, of whom 73.6% were male, with a median age of 10 (9, 11) years, and a body mass index (BMI) of 24.9 (22.7, 27.4) kg/m2. The intergroup comparison results showed that compared with the overweight group, the NAFLD group had higher levels of age, BMI, diastolic blood pressure (DBP), systolic blood pressure (SBP), triglyceride (TG), low density lipoprotein (LDL), alanine transaminase (ALT) and aspartate aminotransferase (AST), and lower level of high density lipoprotein (HDL). The NAFL group had higher levels of age, BMI, DBP, SBP, ALT, and AST, and lower levels of HDL compared with the overweight group. The levels of age, BMI, DBP, SBP, TG, LDL, ALT, and AST of NASH were higher than those in the overweight group, while the level of HDL was lower than that in overweight group (all P<0.017). After adjusting for a variety of confounders, the OR of NAFLD for the highest quantile of iron was 1.79 (95% CI 1.07 to 3.00) compared to the lowest quantile, and no significant association was observed between copper, zinc, calcium, and magnesium, and NAFLD. The subgroup analysis of NAFLD showed that the OR for the highest quantile of iron in children with NAFL was 2.21 (95% CI 1.26 to 3.88), while no significant association was observed between iron level and NASH. In addition, no significant associations were observed between copper, zinc, calcium, and magnesium levels and NAFL or NASH. CONCLUSIONS: High iron level increases the risk of NAFLD (more likely NAFL) in overweight and obese children, while copper, zinc, calcium, magnesium, and other elements are not associated with the risk of NAFLD in overweight and obese children.


Subject(s)
Calcium , Copper , Iron , Magnesium , Non-alcoholic Fatty Liver Disease , Overweight , Zinc , Humans , Non-alcoholic Fatty Liver Disease/blood , Child , Copper/blood , Magnesium/blood , Zinc/blood , Cross-Sectional Studies , Male , Female , Adolescent , Overweight/blood , Overweight/complications , Iron/blood , Calcium/blood , Pediatric Obesity/blood , Pediatric Obesity/complications
3.
Metabolomics ; 20(4): 74, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980520

ABSTRACT

BACKGROUND AND AIMS: Biopterins, including tetrahydrobiopterin (BH4), dihydrobiopterin (BH2), and biopterin (B), were crucial enzyme cofactors in vivo. Despite their recognized clinical significance, there remain notable research gaps and controversies surrounding experimental outcomes. This study aims to clarify the biopterins-related issues, including analytical art, physiological intervals, and pathophysiological implications. MATERIALS AND METHODS: A novel LC-MS/MS method was developed to comprehensively profile biopterins in plasma, utilizing chemical derivatization and cold-induced phase separation. Subsequently, apparently healthy individuals were enrolled to investigate the physiological ranges. And the relationships between biopterins and biochemical indicators were analyzed to explore the pathophysiological implications. RESULTS: The developed method was validated as reliable for detecting biopterins across the entire physiological range. Timely anti-oxidation was found to be essential for accurate assessment of biopterins. The observed overall mean ± SDs levels were 3.51 ± 0.94, 1.54 ± 0.48, 2.45 ± 0.84 and 5.05 ± 1.14 ng/mL for BH4, BH2, BH4/BH2 and total biopterins. The status of biopterins showed interesting correlations with age, gender, hyperuricemia and overweight. CONCLUSION: In conjunction with proper anti-oxidation, the newly developed method enables accurate determination of biopterins status in plasma. The observed physiological intervals and pathophysiological implications provide fundamental yet inspiring support for further clinical researches.


Subject(s)
Biopterins , Tandem Mass Spectrometry , Humans , Biopterins/analogs & derivatives , Biopterins/blood , Biopterins/metabolism , Female , Male , Adult , Tandem Mass Spectrometry/methods , Middle Aged , Chromatography, Liquid/methods , Young Adult , Aged , Biomarkers/blood
4.
Diabetes Care ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028423

ABSTRACT

OBJECTIVE: To evaluate whether associations between sitting time and all-cause and heart disease mortality are modified by physical activity in adults with diabetes. RESEARCH DESIGN AND METHODS: Data came from 6,335 U.S. adults with diabetes from National Health and Nutrition Examination Survey 2007-2018 (baseline), with mortality follow-up through 2019. Sitting time and moderate to vigorous physical activity (MVPA) were self-reported. Cox models were adjusted for sociodemographics, lifestyle factors, and medical conditions. RESULTS: Over a median follow-up of 5.9 years, 1,278 all-cause and 354 heart disease deaths were documented (mean age, 59.6 years; 48.3% female). Longer sitting time was associated with greater all-cause and heart disease mortality risk in inactive (MVPA <10 min/week) or insufficiently active (MVPA 10 to <150 min/week) adults with diabetes, but not in active adults (MVPA ≥150 min/week) (all-cause mortality: P = 0.003 for interaction; heart disease mortality: P = 0.008 for interaction). CONCLUSIONS: In adults with diabetes, meeting guideline-recommended physical activity may offset the elevated all-cause and heart disease mortality risk associated with excessive sitting time.

5.
Adv Healthc Mater ; : e2401836, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015050

ABSTRACT

Nanozymes, with their versatile composition and structural adaptability, present distinct advantages over natural enzymes including heightened stability, customizable catalytic activity, cost-effectiveness, and simplified synthesis process, making them as promising alternatives in various applications. Recent advancements in nanozyme research have shifted focus from serendipitous discovery toward a more systematic approach, leveraging machine learning, theoretical calculations, and mechanistic explorations to engineer nanomaterial structures with tailored catalytic functions. Despite its pivotal role, electron transfer, a fundamental process in catalysis, has often been overlooked in previous reviews. This review comprehensively summarizes recent strategies for modulating electron transfer processes to fine-tune the catalytic activity and specificity of nanozymes, including electron-hole separation and carrier transfer. Furthermore, the bioapplications of these engineered nanozymes, including antimicrobial treatments, cancer therapy, and biosensing are also introduced. Ultimately, this review aims to offer invaluable insights for the design and synthesis of nanozymes with enhanced performance, thereby advancing the field of nanozyme research.

6.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953881

ABSTRACT

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Polylactic Acid-Polyglycolic Acid Copolymer , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Mice , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Microspheres , Photothermal Therapy , Pneumonia, Staphylococcal/therapy , Phage Therapy/methods , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Indocyanine Green/therapeutic use , Indocyanine Green/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Administration, Inhalation , Humans , Bacteriophages/chemistry
7.
J Invest Surg ; 37(1): 2381733, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39038816

ABSTRACT

OBJECTIVE: To construct and internally validate a nomogram that predicts the likelihood of postoperative delirium in a cohort of elderly individuals undergoing hip arthroplasty. METHODS: Data for a total of 681 elderly patients underwent hip arthroplasty were retrospectively collected and divided into a model (n = 477) and a validation cohort (n = 204) according to the principle of 7:3 distribution temporally. The assessment of postoperative cognitive function was conducted through the utilization of The Confusion Assessment Method (CAM). The nomogram model for postoperative cognitive impairments was established by a combination of Lasso regression and logistic regression. The receiver operating characteristic (ROC) curve, calibration plot, and decision curve analysis (DCA) were used to evaluate the performance. RESULTS: The nomogram utilized various predictors, including age, body mass index (BMI), education, preoperative Barthel Index, preoperative hemoglobin level, history of diabetes, and history of cerebrovascular disease, to forecast the likelihood of postoperative delirium in patients. The area under the ROC curves (AUC) for the nomogram, incorporating the aforementioned predictors, was 0.836 (95% CI: 0.797-0.875) for the training set and 0.817 (95% CI: 0.755-0.880) for the validation set. The calibration curves for both sets indicated a good agreement between the nomogram's predictions and the actual probabilities. CONCLUSION: The use of this novel nomogram can help clinicians predict the likelihood of delirium after hip arthroplasty in elderly patients and help prevent and manage it in advance.


Subject(s)
Arthroplasty, Replacement, Hip , Delirium , Nomograms , Humans , Arthroplasty, Replacement, Hip/adverse effects , Aged , Female , Male , Retrospective Studies , Delirium/etiology , Delirium/diagnosis , Delirium/epidemiology , Aged, 80 and over , Risk Factors , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Postoperative Complications/diagnosis , Risk Assessment/methods , Risk Assessment/statistics & numerical data , ROC Curve
8.
J Am Chem Soc ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905206

ABSTRACT

Quantum dots (QDs) exhibit superior brightness and photochemical stability, making them the preferred option for highly sensitive single-molecule detection compared with fluorescent dyes or proteins. Nevertheless, their high surface energy leads to nonspecific adsorption and poor colloidal stability. In the past decades, we have found that QD-based fluorescent nanoparticles (FNs) can not only address these limitations but also enhance detection sensitivity. However, the photoluminescence quantum yield (PLQY) of FNs is significantly lower compared with that of original QDs. It is urgent to develop a strategy to solve the issue, aiming to further enhance detection sensitivity. In this study, we found that the decrease of PLQY of FNs prepared by free radical polymerization was attributed to two factors: (1) generation of defects that can cause nonradiative transitions resulting from QD-ligands desorption and QD-shell oxidation induced by free radicals; (2) self-absorption resulting from aggregation caused by incompatibility of QDs with polymers. Based on these, we proposed a multihierarchical regulation strategy that includes: (1) regulating QD-ligands; (2) precisely controlling free radical concentration; and (3) constructing cross-linked structures of polymer to improve compatibility and to reduce the formation of surface defects. It is crucial to emphasize that the simultaneous coordination of multiple factors is essential. Consequently, a world-record PLQY of 97.6% for FNs was achieved, breaking through the current bottleneck at 65%. The flexible application of this regulatory concept paves the way for the large-scale production of high-brightness QD-polymer complexes, enhancing their potential applications in sensitive biomedical detection.

10.
Ecol Evol ; 14(6): e11575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932953

ABSTRACT

With 75 known species, the freshwater fish genus Sinocyclocheilus is the largest cavefish radiation in the world and shows multiple adaptations for cave-dwelling (stygomorphic adaptations), which include a range of traits such as eye degeneration (normal-eyed, micro-eyed and eyeless), depigmentation of skin, and in some species, the presence of "horns". Their behavioural adaptations to subterranean environments, however, are poorly understood. Wall-following (WF) behaviour, where an organism remains in close contact with the boundary demarcating its habitat when in the dark, is a peculiar behaviour observed in a wide range of animals and is enhanced in cave dwellers. Hence, we hypothesise that wall-following is also present in Sinocyclocheilus, possibly enhanced in eyeless species compared to eye bearing (normal-/micro-eyed species). Using 13 species representative of Sinocyclocheilus radiation and eye morphs, we designed a series of assays, based on pre-existing methods for Astyanax mexicanus behavioural experiments, to examine wall-following behaviour under three conditions. Our results indicate that eyeless species exhibit significantly enhanced intensities of WF compared to normal-eyed species, with micro-eyed forms demonstrating intermediate intensities in the WF distance. Using a mtDNA based dated phylogeny (chronogram with four clades A-D), we traced the degree of WF of these forms to outline common patterns. We show that the intensity of WF behaviour is higher in the subterranean clades compared to clades dominated by normal-eyed free-living species. We also found that eyeless species are highly sensitive to vibrations, whereas normal-eyed species are the least sensitive. Since WF behaviour is presented to some degree in all Sinocyclocheilus species, and given that these fishes evolved in the late Miocene, we identify this behaviour as being ancestral with WF enhancement related to cave occupation. Results from this diversification-scale study of cavefish behaviour suggest that enhanced wall-following behaviour may be a convergent trait across all stygomorphic lineages.

11.
Adv Mater ; : e2311335, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847403

ABSTRACT

The challenges associated with heat dissipation in high-power electronic devices used in communication, new energy, and aerospace equipment have spurred an urgent need for high-performance thermal interface materials (TIMs) to establish efficient heat transfer pathways from the heater (chip) to heat sinks. Recently, emerging 2D materials, such as graphene and boron nitride, renowned for their ultrahigh basal-plane thermal conductivity and the capacity to facilitate cross-scale, multi-morphic structural design, have found widespread use as thermal fillers in the production of high-performance TIMs. To deepen the understanding of 2D material-based TIMs, this review focuses primarily on graphene and boron nitride-based TIMs, exploring their structures, properties, and applications. Building on this foundation, the developmental history of these TIMs is emphasized and a detailed analysis of critical challenges and potential solutions is provided. Additionally, the preparation and application of some other novel 2D materials-based TIMs are briefly introduced, aiming to offer constructive guidance for the future development of high-performance TIMs.

12.
Huan Jing Ke Xue ; 45(6): 3523-3532, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897772

ABSTRACT

In this study, the effects of four types of amendments on effective Cd and Cd content in different parts of prickly ash soil and soil enzyme activity were studied, which provided scientific basis for acidification improvement of purple soil and heavy metal pollution control. A field experiment was conducted. Six treatments were set up:no fertilizer (CK), only chemical fertilizer (F), lime + chemical fertilizer (SF), organic fertilizer + chemical fertilizer (OM), biochar + chemical fertilizer (BF), and vinasse biomass ash + chemical fertilizer (JZ). Soil pH; available Cd (DTPA-Cd); Cd content in branches, leaves, shells, and seeds of Zanthoxylum; as well as the activities of catalase (S-CAT), acid phosphatase (S-ACP), and urease (S-UE) in different treatments were studied, and their relationships were clarified. The results showed following:① The two treatments of vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer significantly increased soil pH (P < 0.05) to 3.39 and 2.25 units higher than that in the control, respectively. Compared with that in the control treatment, the content of available Cd in soil under vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer treatment decreased by 28.91 % and 20.90 %, respectively. ② The contents of Cd in leaves, shells, and seeds of Zanthoxylum were decreased by 31.33 %, 30.24 %, and 34.01 %, respectively. The Cd enrichment ability of different parts of Zanthoxylum was different, with the specific performances being leaves > branches > seeds > shells. Compared with that of the control, the enrichment coefficient of each part of Zanthoxylum treated with vinasse biomass ash + chemical fertilizer decreased significantly(P < 0.05)by 27.54 %-40.0 %. ③ The changes in catalase and urease activities in soil treated with amendments were similar. Compared with those in the control group, the above two enzyme activities were significantly increased by 191.26 % and 199.50 %, respectively, whereas the acid phosphatase activities were decreased by 16.45 %. Correlation analysis showed that soil available Cd content was significantly negatively correlated with soil pH value(P < 0.01), S-CAT and S-UE enzyme activities were significantly positively correlated with soil pH(P < 0.01), and the soil available Cd content was significantly negatively correlated (P < 0.01); the S-ACP enzyme showed the complete opposite trends. The application of lime and vinasse biomass ash to acidic purple soil had the most significant effect on neutralizing soil acidity. It was an effective measure to improve acidic purple soil and prevent heavy metal pollution by reducing the effective Cd content in soil and improving the soil environment while inhibiting the absorption and transfer of Cd in various parts of Zanthoxylum.


Subject(s)
Cadmium , Fertilizers , Soil Pollutants , Soil , Soil Pollutants/metabolism , Cadmium/metabolism , Soil/chemistry , Urease/metabolism , Zanthoxylum/chemistry , Zanthoxylum/metabolism , Acid Phosphatase/metabolism , Catalase/metabolism , Biological Availability , Oxides/chemistry , Calcium Compounds/chemistry , Charcoal/chemistry
13.
Gene ; 927: 148668, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852695

ABSTRACT

Evidence has indicated that Enterococcus plays a vital role in non-alcoholic fatty liver disease (NAFLD) development. However, the microbial genetic basis and metabolic potential in the disease are yet unknown. We previously isolated a bacteria Enterococcus faecium B6 (E. faecium B6) from children with NAFLD for the first time. Here, we aim to systematically investigate the potential of strain B6 in lipogenic effects. The lipogenic effects of strain B6 were explored in vitro and in vivo. The genomic and functional characterizations were investigated by whole-genome sequencing and comparative genomic analysis. Moreover, the metabolite profiles were unraveled by an untargeted metabolomic analysis. We demonstrated that strain B6 could effectively induce lipogenic effects in the liver of mice. Strain B6 contained a circular chromosome and two circular plasmids and posed various functions. Compared to the other two probiotic strains of E. faecium, strain B6 exhibited unique functions in pathways of ABC transporters, phosphotransferase system, and amino sugar and nucleotide sugar metabolism. Moreover, strain B6 produced several metabolites, mainly enriched in the protein digestion and absorption pathway. The unique potential of strain B6 in lipogenic effects was probably associated with glycolysis, fatty acid synthesis, and glutamine and choline transport. This study pioneeringly revealed the metabolic characteristics and specific detrimental traits of strain B6. The findings provided new insights into the underlying mechanisms of E. faecium in lipogenic effects, and laid essential foundations for further understanding of E. faecium-related disease.

14.
Virulence ; 15(1): 2367671, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38910312

ABSTRACT

Viral diseases are among the main threats to public health. Understanding the factors affecting viral invasion is important for antiviral research. Until now, it was known that most viruses have very low plaque-forming unit (PFU)-to-particle ratios. However, further investigation is required to determine the underlying factors. Here, using quantitative single-particle analysis methods, the invasion of Semliki Forest virus (SFV), Japanese encephalitis virus (JEV), and influenza A virus (IAV) containing attachment to the cell surface, entry into the cell, transport towards the cell interior, and fusion with endosomes to release nucleocapsids were quantitatively analysed in parallel. It was found that for SFV with an PFU-to-particle ratio of approximately 1:2, an entry efficiency of approximately 31% limited infection. For JEV, whose PFU-to-particle ratio was approximately 1:310, an attachment efficiency of approximately 27% and an entry efficiency of 10% were the main factors limiting its infection. Meanwhile, for IAV with PFU-to-particle ratios of 1:8100, 5% attachment efficiency, 9% entry efficiency, and 53% fusion efficiency significantly limited its infection. These results suggest that viruses with different infectivities have different limited steps in the invasion process. Moreover, there are significant differences in attachment efficiencies among viruses, emphasizing the pivotal role of attachment in viral invasion. The influence of the virus purification method on virus invasion was also investigated. This study, for the first time, reports the efficiencies of different stages of virus invasion, leading to a better understanding of virus invasion and providing a protocol to quantitatively analyse the virus invasion efficiency.


Subject(s)
Influenza A virus , Semliki forest virus , Virus Internalization , Influenza A virus/physiology , Animals , Semliki forest virus/physiology , Humans , Encephalitis Virus, Japanese/physiology , Cell Line , Virus Attachment , Endosomes/virology
15.
Adv Mater ; 36(29): e2401640, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710154

ABSTRACT

Orthotopic glioblastoma (GBM) has an aggressive growth pattern and complex pathogenesis, becoming one of the most common and deadly tumors of the central nervous system (CNS). The emergence of RNA therapies offers promise for the treatment of GBM. However, the efficient and precise delivery of RNA drugs to specific tumor cells in the brain with high cellular heterogeneity remains ongoing. Here, a strategy is proposed to regulate protein conformation through lipid nanoenvironments to custom-design virus-mimicking nanoparticles (VMNs) with excellent selective cell targeting capabilities, leading to efficient and precise delivery of small interfering RNA for effective treatment of GBM. The optimized VMNs not only retain the ability to cross the blood-brain barrier and release the RNA by lysosomal escape like natural viruses but also ensure precise enrichment in the GBM area. This study lays the conceptual foundation for the custom design of VMNs with superior cell-selective targeting capabilities and opens up the possibility of RNA therapies for the efficient treatment of GBM and CNS tumors.


Subject(s)
Glioblastoma , Nanoparticles , RNA, Small Interfering , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Humans , Nanoparticles/chemistry , Cell Line, Tumor , Animals , Protein Conformation , Brain Neoplasms/therapy , Brain Neoplasms/pathology , Mice , Blood-Brain Barrier/metabolism , Biomimetic Materials/chemistry
16.
Adv Healthc Mater ; : e2304421, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780250

ABSTRACT

Developing small-molecule photothermal agents (PTAs) with good near-infrared-II (NIR-II) response for deeper tissue penetration and minimizing damage to healthy tissues has attracted much attention in photothermal therapy (PTT). However, concentrating ultra-long excitation wavelengths and high photothermal conversion efficiencies (PCEs) into a single organic small molecule is still challenging due to the lack of suitable molecular structures. Here, six polymethine cyanine molecules based on the structure of indocyanine green are synthesized by increasing the conjugated structure of the two-terminal indole salts and the number of rigid methine units, and incorporating longer alkyl side chains into the indole salts. Ultimately, IC-1224 is obtained with an absorption wavelength of more than 1200 nm, which has a high PCE up to 83.2% in the NIR-II window and exhibits excellent PTT tumor ablation performance. This provides a high-performance NIR-II-responsive PTA, and offers further possibilities for the application of PTT in biomedical fields.

17.
Chemistry ; : e202401882, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820203

ABSTRACT

It is worth but still challenging to develop the low-valent main group compounds with persistent room temperature phosphorescence (pRTP). Herein, we presented germylene-based persistent phosphors by introduction of low-valent Ge center into chromophore. A novel phosphors CzGe and its series of derivatives, namely CzGeS, CzGeSe, CzGeAu, and CzGeCu, were synthesized. Experiments and theoretical calculations reveal that the pRTP behavior were "turn on" due to the heavy atom effect of germylene. More importantly, the low-valent of oxidation state and structural traits propelled GeCz had a balance between the intersystem crossing and the shortening of lifetime caused by the heavy atoms, resulting the ultralong lifetime of 309 ms and phosphorescent quantum efficiency of 15.84 %, which is remarkable among heavy main group phosphors. This research provides valuable insights to the design of heavy atoms in phosphors and expand the applications of germylene chemistry.

18.
Gut Microbes ; 16(1): 2351620, 2024.
Article in English | MEDLINE | ID: mdl-38738766

ABSTRACT

Gut microbiota plays an essential role in nonalcoholic fatty liver disease (NAFLD). However, the contribution of individual bacterial strains and their metabolites to childhood NAFLD pathogenesis remains poorly understood. Herein, the critical bacteria in children with obesity accompanied by NAFLD were identified by microbiome analysis. Bacteria abundant in the NAFLD group were systematically assessed for their lipogenic effects. The underlying mechanisms and microbial-derived metabolites in NAFLD pathogenesis were investigated using multi-omics and LC-MS/MS analysis. The roles of the crucial metabolite in NAFLD were validated in vitro and in vivo as well as in an additional cohort. The results showed that Enterococcus spp. was enriched in children with obesity and NAFLD. The patient-derived Enterococcus faecium B6 (E. faecium B6) significantly contributed to NAFLD symptoms in mice. E. faecium B6 produced a crucial bioactive metabolite, tyramine, which probably activated PPAR-γ, leading to lipid accumulation, inflammation, and fibrosis in the liver. Moreover, these findings were successfully validated in an additional cohort. This pioneering study elucidated the important functions of cultivated E. faecium B6 and its bioactive metabolite (tyramine) in exacerbating NAFLD. These findings advance the comprehensive understanding of NAFLD pathogenesis and provide new insights for the development of microbe/metabolite-based therapeutic strategies.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Tyramine , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Humans , Enterococcus faecium/metabolism , Mice , Child , Tyramine/metabolism , Male , Female , Mice, Inbred C57BL , Liver/metabolism , Liver/microbiology , Pediatric Obesity/microbiology , Pediatric Obesity/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
19.
J Mater Chem B ; 12(18): 4398-4408, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651348

ABSTRACT

Neurological disorders are closely linked to the alterations in cell membrane permeability (CMP) and mitochondrial membrane potential (MMP). Changes in CMP and MMP may lead to damage and death of nerve cells, thus triggering the onset and progression of neurological diseases. Therefore, monitoring the changes of these two physiological parameters not only benefits the accurate assessment of nerve cell health status, but also enables providing key information for the diagnosis and treatment of neurological diseases. However, the simultaneous monitoring of these two cellular physiological parameters is still challenging. Herein, we design and synthesize two quinolinium-carbazole-derivated fluorescent probes (OQ and PQ). As isomers, the only difference in their chemical structures is the linking position of the carbazole unit in quinoline rings. Strikingly, such a subtle difference endows OQ and PQ with significantly different organelle-staining behaviors. PQ mainly targets at the nucleus, OQ can simultaneously stain cell membranes and mitochondria in normal cells, and performs CMP and MMP-dependent translocation from the cell membrane to mitochondria then to the nucleus, thus holding great promise as an intracellular translocation probe to image the changes of CMP and MMP. After unraveling the intrinsic mechanism of their different translocation abilities by combining experiments with molecular dynamics simulations and density functional theory calculations, we successfully used OQ to monitor the continuous changes of CMP and MMP in three neurological disease-related cell models, including oxidative stress-damaged, Parkinson's disease, and virus-infected ones. Besides providing a validated imaging tool for monitoring cellular physiological parameters, this work paves a promising route for designing intracellular translocation probes to analyze cellular physiological parameters associated with various diseases.


Subject(s)
Fluorescent Dyes , Membrane Potential, Mitochondrial , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Nervous System Diseases , Density Functional Theory , Cell Membrane Permeability , Carbazoles/chemistry , Molecular Structure , Animals , Optical Imaging
20.
Anal Chem ; 96(16): 6426-6435, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38604773

ABSTRACT

Sensors designed based on the trans-cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the trans-cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state. The length design and dosage of the auxiliary probe need to be strictly optimized to ensure the lowest background and the best signal-to-noise ratio. This will inevitably increase the experiment complexity. To solve this problem, we propose using AS after the "RESET" effect to directly regulate the Cas12a enzymatic activity. Initially, the activator strand was rationally designed to be embedded in a hairpin structure to deprive its ability to activate the CRISPR/Cas12a system. When the target is present, target-mediated strand displacement causes the conformation change in the AS, the hairpin structure is opened, and the CRISPR/Cas12a system is reactivated; the switchable structure of AS can be used to regulate the degree of activation of Cas12a according to the target concentration. Due to the advantages of low background and stability, the CRISPR/Cas12a-based strategy can not only image endogenous biomarkers (miR-21) in living cells but also enable long-term and accurate imaging analysis of the process of exogenous virus invasion of cells. Release and replication of virus genome in host cells are indispensable hallmark events of cell infection by virus; sensitive monitoring of them is of great significance to revealing virus infection mechanism and defending against viral diseases.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , MicroRNAs , CRISPR-Cas Systems/genetics , Biosensing Techniques/methods , Humans , MicroRNAs/analysis , MicroRNAs/metabolism , Allosteric Regulation , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...