Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(6): e11575, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932953

ABSTRACT

With 75 known species, the freshwater fish genus Sinocyclocheilus is the largest cavefish radiation in the world and shows multiple adaptations for cave-dwelling (stygomorphic adaptations), which include a range of traits such as eye degeneration (normal-eyed, micro-eyed and eyeless), depigmentation of skin, and in some species, the presence of "horns". Their behavioural adaptations to subterranean environments, however, are poorly understood. Wall-following (WF) behaviour, where an organism remains in close contact with the boundary demarcating its habitat when in the dark, is a peculiar behaviour observed in a wide range of animals and is enhanced in cave dwellers. Hence, we hypothesise that wall-following is also present in Sinocyclocheilus, possibly enhanced in eyeless species compared to eye bearing (normal-/micro-eyed species). Using 13 species representative of Sinocyclocheilus radiation and eye morphs, we designed a series of assays, based on pre-existing methods for Astyanax mexicanus behavioural experiments, to examine wall-following behaviour under three conditions. Our results indicate that eyeless species exhibit significantly enhanced intensities of WF compared to normal-eyed species, with micro-eyed forms demonstrating intermediate intensities in the WF distance. Using a mtDNA based dated phylogeny (chronogram with four clades A-D), we traced the degree of WF of these forms to outline common patterns. We show that the intensity of WF behaviour is higher in the subterranean clades compared to clades dominated by normal-eyed free-living species. We also found that eyeless species are highly sensitive to vibrations, whereas normal-eyed species are the least sensitive. Since WF behaviour is presented to some degree in all Sinocyclocheilus species, and given that these fishes evolved in the late Miocene, we identify this behaviour as being ancestral with WF enhancement related to cave occupation. Results from this diversification-scale study of cavefish behaviour suggest that enhanced wall-following behaviour may be a convergent trait across all stygomorphic lineages.

2.
Curr Zool ; 70(1): 34-44, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476134

ABSTRACT

Participants in mixed-species bird flocks (MSFs) have been shown to associate with species that are similar in body size, diet, and evolutionary history, suggesting that facilitation structures these assemblages. In addition, several studies have suggested that species in MSFs resemble each other in their plumage, but this question has not been systematically investigated for any MSF system. During the nonbreeding season of 2020 and 2021, we sampled 585 MSFs on 14 transects in 2 habitats of Tongbiguang Nature Reserve in western Yunnan Province, China. We performed social network analysis and the Multiple Regression Quadratic Assignment Procedure to evaluate the effect of 4 species traits (body size, overall plumage color, distinctive plumage patterns, and diet) and evolutionary history on species association strength at the whole-MSF and within-MSF levels. All 41 significant relationships showed that species with stronger associations were more similar in their various traits. Body size had the strongest effect on association strength, followed by phylogeny, plumage patterns, and plumage color; diet had the weakest effect. Our results are consistent with the hypotheses that the benefits of associating with phenotypically similar species outweigh the potential costs of interspecific competition, and that trait matching can occur in plumage characteristics, albeit more weakly than in other traits. Several explanations exist as to why similarities in plumage may occur in MSFs, including that they could reduce predators' ability to target phenotypically "odd" individuals. Whether trait matching in plumage occurs through assortative processes in ecological time or is influenced by co-evolution requires further study.

3.
J Pharm Pharmacol ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37971302

ABSTRACT

OBJECTIVES: Breast cancer is a common malignancy in women. More than 90% of breast cancer deaths are caused by metastasis. Epimedii Folium (EF) is a commonly used herb with anti-tumor benefits, but its underlying mechanisms and active components for breast cancer prevention are little understood. This study assessed the therapeutic role of Icariside I (ICS I) in Epimedium flavonoids (EF) on lung metastasis of breast cancer, including the underlying mechanism. METHODS: Western blot, RT-qPCR, wound healing assay, colony formation assay, and flow cytometry were used to investigate the inhibition of breast cancer cells growth and migration by EF and ICS I through disrupting the IL-6/STAT3 pathway. Combined with 4T1 breast cancer model in mice, Western blot, RT-qPCR, Hematoxylin and Eosin staining, immunohistochemistry were used to evaluate the therapeutic role of ICS I in proliferation, apoptosis, invasion, and metastasis of breast cancer. KEY FINDINGS: EF can inhibit STAT3 phosphorylation and reduce the colony formation and migration of breast cancer cells. Detecting the active ingredients in EF, we found ICS I can reduce the activation of STAT3 in 4T1 breast cancer cells, impair colony formation and migration. Moreover, ICS I induced cells G1 phase arrest and modulated Cyclin D1, CDK4, bcl-2, and bax to inhibit proliferation and survival of breast cancer cells. Similarly, the in vivo studies demonstrated that ICS I significantly suppressed tumor development and lung metastasis in the 4T1 mouse model. Tumor cells in vehicle group were arranged in a spoke-like pattern with obvious heterogeneity, and multinucleated tumor giant cells were seen. But, the tumor cells in the ICS I group were disorganized and necrotic lysis was seen in some areas. In ICS I-treated group, tumors' STAT3 phosphorylation level, IL-6, Cyclin D1, CDK4, bcl-2, and vimentin expression were downregulated, bax and cleaved caspase 3 expression were upregulated. In the lung tissue, we could find less metastasis of breast cancer cells and less lung injury in the ICS I group. Besides, the expression of metastasis-related genes MMP9 and vimentin was decreased in the lung tissue of ICS I group. CONCLUSIONS: These findings suggest that ICS I can inhibit breast cancer proliferation, apoptosis, invasion and metastasis probably via targeting IL-6/STAT3 pathway. Therefore, ICS I has the potential to become an innovative therapeutic candidate to breast cancer prevention and treatment.

4.
Cell Commun Signal ; 21(1): 123, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231437

ABSTRACT

BACKGROUND: Idiosyncratic drug-induced liver injury (IDILI) is common in hepatology practices and, in some cases, lethal. Increasing evidence show that tricyclic antidepressants (TCAs) can induce IDILI in clinical applications but the underlying mechanisms are still poorly understood. METHODS: We assessed the specificity of several TCAs for NLRP3 inflammasome via MCC950 (a selective NLRP3 inhibitor) pretreatment and Nlrp3 knockout (Nlrp3-/-) BMDMs. Meanwhile, the role of NLRP3 inflammasome in the TCA nortriptyline-induced hepatotoxicity was demonstrated in Nlrp3-/- mice. RESULTS: We reported here that nortriptyline, a common TCA, induced idiosyncratic hepatotoxicity in a NLRP3 inflammasome-dependent manner in mildly inflammatory states. In parallel in vitro studies, nortriptyline triggered the inflammasome activation, which was completely blocked by Nlrp3 deficiency or MCC950 pretreatment. Furthermore, nortriptyline treatment led to mitochondrial damage and subsequent mitochondrial reactive oxygen species (mtROS) production resulting in aberrant activation of the NLRP3 inflammasome; a selective mitochondrial ROS inhibitor pretreatment dramatically abrogated nortriptyline-triggered the NLRP3 inflammasome activation. Notably, exposure to other TCAs also induced aberrant activation of the NLRP3 inflammasome by triggering upstream signaling events. CONCLUSION: Collectively, our findings revealed that the NLRP3 inflammasome may act as a crucial target for TCA agents and suggested that the core structures of TCAs may contribute to the aberrant activation of NLRP3 inflammasome induced by them, an important factor involved in the pathogenesis of TCA-induced liver injury. Video Abstract.


Subject(s)
Chemical and Drug Induced Liver Injury , Inflammasomes , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein , Antidepressive Agents, Tricyclic/adverse effects , Nortriptyline/adverse effects , Furans , Sulfonamides , Inflammation , Reactive Oxygen Species , Mice, Inbred C57BL
5.
Proc Biol Sci ; 289(1984): 20221641, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36476002

ABSTRACT

The genus Sinocyclocheilus, comprising a large radiation of freshwater cavefishes, are well known for their presence of regressive features (e.g. variable eye reduction). Fewer constructive features are known, such as the expansion of the lateral line system (LLS), which is involved in detecting water movements. The precise relationship between LLS expansion and cave adaptation is not well understood. Here, we examine morphology and LLS-mediated behaviour in Sinocyclocheilus species characterized by broad variation in eye size, habitat and geographical distribution. Using live-staining techniques and automated behavioural analyses, we examined 26 Sinocyclocheilus species and quantified neuromast organ number, density and asymmetry within a phylogenetic context. We then examined how these morphological features may relate to wall-following, an established cave-associated behaviour mediated by the lateral line. We show that most species demonstrated laterality (i.e. asymmetry) in neuromast organs on the head, often biased to the right. We also found that wall-following behaviour was distinctive, particularly among eyeless species. Patterns of variation in LLS appear to correlate with the degree of eye loss, as well as geographical distribution. This work reveals that constructive LLS evolution is convergent across distant cavefish taxa and may mediate asymmetric behavioural features that enable survival in stark subterranean microenvironments.


Subject(s)
Cypriniformes , Animals , Phylogeny
6.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5299-5305, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36472037

ABSTRACT

Excess acetaminophen(APAP) can be converted by the cytochrome P450 system to the toxic metabolite N-acetyl-p-benzoquinoneimine(NAPQI), which consumes glutathione(GSH). When GSH is depleted, NAPQI covalently binds with proteins, inducing mitochondrial dysfunction and oxidative stress and thereby leading to hepatotoxicity. Schisandrin C(SinC) is a dibenzocyclooctadiene derivative isolated from Schisandra chinensis. Although there is some evidence showing that SinC has hepatoprotective activity, its protective effect and mechanism on APAP-induced liver injury remain unclear. In this paper, an acute liver injury mouse model was established by intraperitoneal injection of APAP at a dose of 400 mg·kg~(-1) to evaluate the effect of SinC administration on the APAP-induced liver injury and its mechanism through an animal experiment. At the same time, a potential candidate drug was provi-ded for traditional Chinese medicine(TCM) prevention and treatment of overdose APAP-induced liver injury. In the APAP-induced liver injury mouse model, we found that SinC can relieve hepatic histopathological lesions and significantly reduce the activities of alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP). It was also capable of increasing the content of GSH and superoxide dismutase(SOD) and decreasing the levels of total bilirubin(TBIL), direct bilirubin(DBIL), malondialdehyde(MDA), interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α). Further analysis showed that SinC decreased the content of CYP2 E1 in liver tissues at protein and mRNA levels and increased nuclear factor erythroid 2-related factor 2(Nrf2) and the expression of its downstream targets(including HO-1, NQO1 and GCLC). Taken together, the above results indicate that SinC can alleviate APAP-induced liver injury by reducing the expression of CYP2 E1, suppressing apoptosis, improving inflammatory response and activating the Nrf2 signaling pathway to inhibit oxidative stress.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Animals , Acetaminophen/toxicity , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Liver , Signal Transduction , Oxidative Stress , Bilirubin/metabolism
7.
J Ethnopharmacol ; 298: 115593, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35973629

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoralea corylifolia (P. corylifolia Linn.) is a traditional Chinese medicinal plant that exhibits significant aphrodisiac, diuretic, and anti-rheumatic effects. However, it has been reported to cause hepatic injury, but the precise mechanisms remain unclear. AIM OF THE STUDY: To evaluate the safety and risk of P. corylifolia and to elucidate the underlying mechanisms of drug-induced liver injury. MATERIALS AND METHODS: Western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, quantitative polymerase chain reaction (Q-PCR), and flow cytometry were used to explore the effect of bakuchiol (Bak), one of the most abundant and biologically active components of P. corylifolia, on the AIM2 inflammasome activation and the underlying mechanism. Furthermore, we used the lipopolysaccharides (LPS)-induced drug-induced liver injury (DILI) susceptible mice model to study the Bak-mediated hepatotoxicity. RESULTS: Bak induced the maturation of caspase-1 P20, and significantly increased the expression of IL-1ß and TNF-α (P < 0.0001) compared with the control group. Moreover, compared to the Bak group, knockdown of AIM2 inhibited Bak-induced caspase-1 maturation and significantly decreased the production of IL-1ß and TNF-α, but knockout of NLRP3 had no effect. Mechanistically, Bak-induced AIM2 inflammasome activation is involved in mitochondrial damage, mitochondrial DNA (mtDNA) release, and subsequent recognition of cytosolic mtDNA. Our in vivo data showed that co-exposure to LPS and non-hepatotoxic doses of Bak significantly increased the levels of ALT, AST, IL-1ß, TNF-α, and IL-18, indicating that Bak can induce severe liver inflammation (P < 0.005). CONCLUSIONS: The result shows that Bak activates the AIM2 inflammasome by inducing mitochondrial damage to release mtDNA, and subsequently binds to the AIM2 receptor, indicating that Bak may be a risk factor for P. corylifolia-induced hepatic injury.


Subject(s)
Chemical and Drug Induced Liver Injury , Inflammasomes , Animals , Caspase 1/metabolism , Chemical and Drug Induced Liver Injury/etiology , DNA, Mitochondrial , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phenols , Tumor Necrosis Factor-alpha
8.
Phytother Res ; 36(8): 3295-3312, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35666808

ABSTRACT

The polysaccharide extract from Isatidis Radix exhibits potent antiinflammatory and antiviral activities, but the mechanism of Isatidis Radix polysaccharide (IRP) remains obscure. Herein, we reported that IRP blocked the activation of nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, leading to the inhibiting of caspase-1 cleavage and IL-1ß secretion. Mechanistically, IRP did not inhibit NLRP3 inflammasome through suppressing mitochondrial reactive oxygen species (mtROS) production. However, IRP can significantly suppress the oligomerization of apoptosis-associated speck-like protein (ASC) and subsequently block the formation of inflammasome. Next, we evaluate the role of IRP in monosodium urate (MSU)-induced gout in vivo which is a NLRP3-associated disease. We also observed that oral administration of IRP can reduce the increased ankle thickness and the secretion of IL-1ß, IL-18, IL-6, TNF-α and MPO of the mouse ankle joints caused by MSU crystals. Furthermore, flow cytometry analysis highlighted a significant modulation of T helper 17 cells (Th17)/regulatory T cells (Treg) following IRP treatment in MSU induced gout. Overall, our findings suggest that IRP has comprehensive and potent antiinflammatory effects and provide a reasonable therapeutic strategy in preventing inflammasome-associated diseases, such as inflammatory gouty arthritis.


Subject(s)
Arthritis, Gouty , Gout , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/drug therapy , Arthritis, Gouty/metabolism , Gout/drug therapy , Gout/metabolism , Inflammasomes , Interleukin-1beta/metabolism , Macrophages , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polysaccharides/metabolism , Uric Acid/pharmacology
9.
Pharm Biol ; 60(1): 958-967, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35588406

ABSTRACT

CONTEXT: Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) essential oil (SCEO) composition is rich in lignans that are believed to perform protective effects in the liver. OBJECTIVE: This study investigates the effects of SCEO in the treatment of acetaminophen (APAP)-induced liver injury in mice. MATERIALS AND METHODS: C57BL/6 mice (n = 56) were randomly divided into seven groups: normal; APAP (300 mg/kg); APAP plus bicyclol (200 mg/kg); APAP plus SCEO (0.25, 0.5, 1, 2 g/kg). Serum biochemical parameters for liver function, inflammatory factors, and antioxidant activities were determined. The protein expression levels of Nrf2, GCLC, GCLM, HO-1, p62, and LC3 were assessed by western blotting. Nrf2, GCLC, HO-1, p62, and LC3 mRNA were detected by real-time PCR. RESULTS: Compared to APAP overdose, SCEO (2 g/kg) pre-treatment reduced the serum levels of AST (79.4%), ALT (84.6%), TNF-α (57.3%), and IL-6 (53.0%). In addition, SCEO (2 g/kg) markedly suppressed cytochrome P450 2E1 (CYP2E1) (15.4%) and attenuated the exhaustion of GSH (43.6%) and SOD (16.8%), and the accumulation of MDA (22.6%) in the liver, to inhibit the occurrence of oxidative stress. Moreover, hepatic tissues from our experiment revealed that SCEO pre-treatment mitigated liver injury caused by oxidative stress by increasing Nrf2, HO-1, and GCL. Additionally, SCEO activated autophagy, which upregulated hepatic LC3-II and decreased p62 in APAP overdose mice (p < 0.05). DISCUSSION AND CONCLUSIONS: Our evidence demonstrated that SCEO protects hepatocytes from APAP-induced liver injury in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Oils, Volatile , Schisandra , Acetaminophen/toxicity , Animals , Autophagy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oils, Volatile/pharmacology , Oxidative Stress , Schisandra/metabolism
10.
J Ethnopharmacol ; 285: 114796, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34740771

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora flavescens is a traditional Chinese medicine commonly used in clinical practice, which has the effects of clearing away heat and dampness. Unfortunately, it has been reported that Sophora flavescens and its preparation may cause liver damage to a certain extent, but the exact mechanism is not clear. AIM OF THE STUDY: To assess the safety and risk of Sophora flavescens and to elucidate the relationship between Idiosyncratic drug-induced liver injury (IDILI) and the NOD-like receptor family protein 3 (NLRP3) inflammasome. MATERIALS AND METHODS: Western blot, Caspase-Glo® 1 Inflammasome Assay, ELISA kits, Flow cytometry and FLIPRT Tetra system were used to study the effect of isoxanthohumol (IXN) on the activation of NLRP3 inflammasome and its mechanism. Combined with the lipopolysaccharide-mediated susceptibility IDILI model in mice to evaluate the hepatotoxicity of IXN. RESULTS: IXN facilitates the activation of caspase-1 and secretion of interleukin (IL)-1ß triggered by adenosine triphosphate (ATP), nigericin but not those induced by silicon dioxide and poly (I:C). Furthermore, the activation of NLR-family CARD-containing protein 4 (NLRC4) and the absent in melanoma 2 (AIM2) was not affected by IXN. Mechanistically, IXN promotes NLRP3-dependent apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) oligomerization and the generation of mitochondrial reactive oxygen species (mtROS) triggered by ATP. The in vivo data showed that non-hepatotoxic doses of IXN resulted in increased levels of glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, tumor necrosis factor and IL-1ß in the serum and showed increased liver inflammation in the susceptible IDILI model mediated by lipopolysaccharide. CONCLUSIONS: These results show that IXN enhances NLRP3 inflammasome activation by promoting the accumulation of ATP-induced mtROS and ASC oligomerization to cause IDILI, indicating that IXN may be a risk factor for liver injury caused by the clinical use of Sophora flavescens.


Subject(s)
Chemical and Drug Induced Liver Injury , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sophora/chemistry , Xanthones , Adenosine Triphosphate/metabolism , Animals , Aspartate Aminotransferases/metabolism , Cells, Cultured , Chemical and Drug Induced Liver Injury/immunology , Chemical and Drug Induced Liver Injury/metabolism , Inflammasomes/metabolism , Medicine, Chinese Traditional/methods , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Xanthones/pharmacology , Xanthones/toxicity
11.
EMBO Rep ; 23(2): e53499, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34882936

ABSTRACT

The activation of the nucleotide oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is related to the pathogenesis of a wide range of inflammatory diseases, but drugs targeting the NLRP3 inflammasome are still scarce. In the present study, we demonstrated that Licochalcone B (LicoB), a main component of the traditional medicinal herb licorice, is a specific inhibitor of the NLRP3 inflammasome. LicoB inhibits the activation of the NLRP3 inflammasome in macrophages but has no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, LicoB directly binds to NEK7 and inhibits the interaction between NLRP3 and NEK7, thus suppressing NLRP3 inflammasome activation. Furthermore, LicoB exhibits protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including lipopolysaccharide (LPS)-induced septic shock, MSU-induced peritonitis and non-alcoholic steatohepatitis (NASH). Our findings indicate that LicoB is a specific NLRP3 inhibitor and a promising candidate for treating NLRP3 inflammasome-related diseases.


Subject(s)
Chalcones , Inflammasomes , Animals , Chalcones/pharmacology , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein
12.
Front Cell Dev Biol ; 9: 763864, 2021.
Article in English | MEDLINE | ID: mdl-34858986

ABSTRACT

Hepatic fibrosis is the final pathway of several chronic liver diseases, which is characterized by the accumulation of extracellular matrix due to chronic hepatocyte damage. Activation of hepatic stellate cells and oxidative stress (OS) play an important role in mediating liver damage and initiating hepatic fibrosis. Hence, hepatic fibrosis can be reversed by inhibiting multiple channels such as oxidative stress, liver cell damage, or activation of hepatic stellate cells. Liuwei Wuling Tablets is a traditional Chinese medicine formula with the effect of anti- hepatic fibrosis, but the composition and mechanism of reversing hepatic fibrosis are still unclear. Our study demonstrated that one of the main active components of the Chinese medicine Schisandra chinensis, schisandrin C (Sin C), significantly inhibited oxidative stress and prevented hepatocyte injury. Meanwhile one of the main active components of the Chinese medicine Curdione inhibited hepatic stellate cell activation by targeting the TGF-ß1/Smads signaling pathway. The further in vivo experiments showed that Sin C, Curdione and the combination of both have the effect of reversing liver fibrosis in mice, and the combined effect of inhibiting hepatic fibrosis is superior to treatment with Sin C or Curdione alone. Our study provides a potential candidate for multi-molecular or multi-pathway combination therapies for the treatment of hepatic fibrosis and demonstrates that combined pharmacotherapy holds great promise in the prevention and treatment of hepatic fibrosis.

14.
Front Pharmacol ; 12: 747010, 2021.
Article in English | MEDLINE | ID: mdl-34630116

ABSTRACT

Liver disease is a major cause of illness and death worldwide. In China, liver diseases, primarily alcoholic and nonalcoholic fatty liver disease, and viral hepatitis, affect approximately 300 million people, resulting in a major impact on the global burden of liver diseases. The use of Liuweiwuling (LWWL), a traditional Chinese medicine formula, approved by the Chinese Food and Drug Administration for decreasing aminotransferase levels induced by different liver diseases. Our previous study indicated a part of the material basis and mechanisms of LWWL in the treatment of hepatic fibrosis. However, knowledge of the materials and molecular mechanisms of LWWL in the treatment of liver diseases remains limited. Using pharmacokinetic and network pharmacology methods, this study demonstrated that the active components of LWWL were involved in the treatment mechanism against liver diseases and exerted anti-apoptosis and anti-inflammatory effects. Furthermore, esculetin, luteolin, schisandrin A and schisandrin B may play an important role by exerting anti-inflammatory and hepatoprotective effects in vitro. Esculeti and luteolin dose-dependently inhibited H2O2-induced cell apoptosis, and luteolin also inhibited the NF-κB signaling pathway in bone marrow-derived macrophages. schisandrin A and B inhibited the release of ROS in acetaminophen (APAP)-induced acute liver injury in vitro. Moreover, LWWL active ingredients protect against APAP-induced acute liver injury in mice. The four active ingredients may inhibit oxidative stress or inflammation to exert hepatoprotective effect. In conclusion, our results showed that the novel component combination of LWWL can protect against APAP-induced acute liver injury by inhibiting cell apoptosis and exerting anti-inflammatory effects.

15.
Front Pharmacol ; 12: 745561, 2021.
Article in English | MEDLINE | ID: mdl-34675811

ABSTRACT

Liver fibrosis is an abnormal proliferation of connective tissue in the liver caused by various pathogenic factors. Chronic liver injury leads to release of inflammatory cytokines and reactive oxygen species (ROS) from damaged hepatocytes, which activates hepatic stellate cells (HSCs) to secrete extracellular matrix proteins, thereby leading to fibrosis. Thus, inhibition of hepatocyte injury and HSC activation, and promotion of apoptosis of activated HSCs are important strategies for prevention of liver fibrosis. In this study, we showed that the germacrone (GER), the main component in the volatile oil of zedoary turmeric, inhibited hepatic fibrosis by regulating multiple signaling pathways. First, GER improved the cell survival rate by inhibiting the production of ROS after hepatocyte injury caused by acetaminophen (APAP). In addition, GER inhibited the activation of HSCs and expression of collagen I by blocking TGF-ß/Smad pathway in LX-2 cells. However, when the concentration of GER was higher than 60 µM, it specifically induced HSCs apoptosis by promoting the expression and activation of apoptosis-related proteins, but it had no effect on hepatocytes. Importantly, GER significantly attenuated the methionine- and choline-deficient (MCD) diet-induced liver fibrosis by inhibiting liver injury and the activation of HSCs in vivo. In summary, GER can not only protect hepatocytes by reducing ROS release to avoid the liver injury-induced HSC activation, but also directly inhibit the activation and survival of HSCs by regulating TGF-ß/Smad and apoptosis pathways. These results demonstrate that GER can be used as a potential therapeutic drug for the treatment of liver fibrosis.

16.
Front Pharmacol ; 12: 655531, 2021.
Article in English | MEDLINE | ID: mdl-34149411

ABSTRACT

Hepatic fibrosis represents an important event in the progression of chronic liver injury to cirrhosis, and is characterized by excessive extracellular matrix proteins aggregation. Early fibrosis can be reversed by inhibiting hepatocyte injury, inflammation, or hepatic stellate cells activation, so the development of antifibrotic drugs is important to reduce the incidence of hepatic cirrhosis or even hepatic carcinoma. Here we demonstrate that Schisandrol B (SolB), one of the major active constituents of traditional hepato-protective Chinese medicine, Schisandra sphenanthera, significantly protects against hepatocyte injury, while Wedelolactone (WeD) suppresses the TGF-ß1/Smads signaling pathway in hepatic stellate cells (HSCs) and inflammation, the combination of the two reverses hepatic fibrosis in mice and the inhibitory effect of the combination on hepatic fibrosis is superior to that of SolB or WeD treatment alone. Combined pharmacotherapy represents a promising strategy for the prevention and treatment of liver fibrosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...