Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Breast Cancer ; 22(2): 219-236, 2019 06.
Article in English | MEDLINE | ID: mdl-31281725

ABSTRACT

PURPOSE: Breast cancer is the most frequently diagnosed malignancy in women worldwide. MicroRNAs (miRNAs) are thought to serve as potential biomarkers in various cancers, including breast cancer. METHODS: We evaluated the miRNA expression profiles in 1,083 breast cancer samples and 104 normal breast tissues from The Cancer Genome Atlas database. We used the edgeR package of R software to analyze the differentially expressed miRNAs in normal and cancer tissues, and screened survival-related miRNAs by Kaplan-Meier analysis. A receiver operating characteristic curve was generated to evaluate the accuracy of these miRNAs as molecular markers for breast cancer diagnosis. Furthermore, the functional role of these miRNAs was verified using cell experiments. Targets of candidate miRNAs were predicted using 9 online databases, and Gene Ontology (GO) functional annotation and pathway analyses were conducted using Database for Annotation, Visualization and Integrated Discovery online tool. RESULTS: A total of 68 miRNAs showed significantly different expression patterns between the groups (p < 0.001), and 13 of these miRNAs were significantly associated with poor survival (p < 0.05). Three miRNAs with high specificity and sensitivity, namely, miR-148b-3p, miR-190b, and miR-429, were selected. In vitro experiments showed that the overexpression of these 3 miRNAs significantly promoted the proliferation and migration of MDA-MB-468 and T47D cells and reduced the apoptosis of T47D cells. GO and pathway enrichment analyses revealed that the targets of these dysregulated miRNAs were involved in many critical cancer-related biological processes and pathways. CONCLUSION: The miR-148b-3p, miR-190b, and miR-429 may serve as potential diagnostic and prognostic markers for breast cancer. This study demonstrated the roles of these 3 miRNAs in the initiation and progression of breast cancer.

2.
PLoS One ; 12(2): e0171676, 2017.
Article in English | MEDLINE | ID: mdl-28207831

ABSTRACT

BACKGROUND: The function of the tumor suppressor gene RASSF1A in cancer cells has been detailed in many studies. However, due to the methylation of its promoter, the expression of RASSF1A is missing in most cancers. In the literature, we found that the conclusion regarding the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma was not unified. This study adopts the use of a meta-analysis and bioinformatics to explore the relationship between RASSF1A gene promoter methylation and the susceptibility and prognosis of melanoma. METHODS: Data on melanoma susceptibility were downloaded from the PubMed, Cochrane Library, Web of Science and Google Scholar databases, which were analyzed via a meta-analysis. The effect sizes were estimated by measuring an odds ratio (OR) with a 95% confidence interval (CI). We also used a chi-squared-based Q test to examine the between-study heterogeneity, and used funnel plots to evaluate publication bias. The data on melanoma prognosis, which were analyzed by bioinformatics methods, were downloaded from The Cancer Genome Atlas (TCGA) project. The effect sizes were estimated by measuring the hazard ratios (HRs) with a 95% confidence interval (CI). RESULTS: Our meta-analysis included 10 articles. We found that RASSF1A gene promoter methylation was closely related to melanoma susceptibility (OR = 12.67, 95% CI: 6.16 ∼ 26.05, z = 6.90, P<0.0001 according to a fixed effects model and OR = 9.25, 95% CI: 4.37 ∼ 19.54, z = 5.82, P<0.0001 according to a random effects model). The results of the meta-analysis did not reveal any heterogeneity (tau2 = 0.00; H = 1 [1; 1.55]; I2 = 0% [0%; 58.6%], P = 0.5158) or publication bias (t = 0.87, P = 0.4073 by Egger's test; Z = 0.45, P = 0.6547 by Begg's test); therefore, we believe that the results of our meta-analysis were more reliable. To explore the relationship between RASSF1A gene methylation, the prognosis of melanoma and the clinical features of this cancer type, we used the melanoma DNA methylation data and clinical data from TCGA project. We found that RASSF1A gene promoter methylation and melanoma prognosis did not demonstrate any relationship (HR was 0.94 (95% CI = [0.69; 1.27], P = 0.694) with disease-free survival and 0.74 (95% CI = [0.53; 1.05], P = 0.106) for overall survival), and no significant difference was observed between RASSF1A gene promoter methylation and the clinical-pathological features of melanoma. CONCLUSIONS: In conclusion, the meta-analysis of the data in these articles provides strong evidence that the methylation status of the RASSF1A gene promoter was strongly related to melanoma susceptibility. Our bioinformatics analysis revealed no significant difference between RASSF1A gene promoter methylation and the prognosis and clinical-pathological features of melanoma.


Subject(s)
Gene Expression Regulation, Neoplastic , Melanoma/genetics , Tumor Suppressor Proteins/genetics , Computational Biology , DNA Methylation , Disease-Free Survival , Genetic Predisposition to Disease , Melanoma/pathology , Prognosis , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...