Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39001052

ABSTRACT

With the continuous advancement of the economy and technology, the number of cars continues to increase, and the traffic congestion problem on some key roads is becoming increasingly serious. This paper proposes a new vehicle information feature map (VIFM) method and a multi-branch convolutional neural network (MBCNN) model and applies it to the problem of traffic congestion detection based on camera image data. The aim of this study is to build a deep learning model with traffic images as input and congestion detection results as output. It aims to provide a new method for automatic detection of traffic congestion. The deep learning-based method in this article can effectively utilize the existing massive camera network in the transportation system without requiring too much investment in hardware. This study first uses an object detection model to identify vehicles in images. Then, a method for extracting a VIFM is proposed. Finally, a traffic congestion detection model based on MBCNN is constructed. This paper verifies the application effect of this method in the Chinese City Traffic Image Database (CCTRIB). Compared to other convolutional neural networks, other deep learning models, and baseline models, the method proposed in this paper yields superior results. The method in this article obtained an F1 score of 98.61% and an accuracy of 98.62%. Experimental results show that this method effectively solves the problem of traffic congestion detection and provides a powerful tool for traffic management.

2.
PLoS One ; 19(2): e0292380, 2024.
Article in English | MEDLINE | ID: mdl-38329990

ABSTRACT

This article proposes a continuous-time optimization approch instead of tranditional optimiztion methods to address the nuclear norm minimization (NNM) problem. Refomulating the NNM into a matrix form, we propose a Lagrangian programming neural network (LPNN) to solve the NNM. Moreover, the convergence condtions of LPNN are presented by the Lyapunov method. Convergence experiments are presented to demonstrate the convergence of LPNN. Compared with tranditional algorithms of NNM, the proposed algorithm outperforms in terms of image recovery.


Subject(s)
Algorithms , Neural Networks, Computer
3.
Cogn Neurodyn ; 16(1): 215-228, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35126779

ABSTRACT

The neuronal state resetting model is a hybrid system, which combines neuronal system with state resetting process. As the membrane potential reaches a certain threshold, the membrane potential and recovery current are reset. Through the resetting process, the neuronal system can produce abundant new firing patterns. By integrating with the state resetting process, the neuronal system can generate irregular limit cycles (limit cycles with impulsive breakpoints), resulting in repetitive spiking or bursting with firing peaks which can not exceed a presetting threshold. Although some studies have discussed the state resetting process in neurons, it has not been addressed in neural networks so far. In this paper, we consider chimera states and cluster solutions in Hindmarsh-Rose neural networks with state resetting process. The network structures are based on regular ring structures and the connections among neurons are assumed to be bidirectional. Chimera and cluster states are two types of phenomena related to synchronization. For neural networks, the chimera state is a self-organization phenomenon in which some neuronal nodes are synchronous while the others are asynchronous. Cluster synchronization divides the system into several subgroups based on their synchronization characteristics, with neuronal nodes in each subgroup being synchronous. By improving previous chimera measures, we detect the spike inspire time instead of the state variable and calculate the time between two adjacent spikes. We then discuss the incoherence, chimera state, and coherence of the constructed neural networks using phase diagrams, time series diagrams, and probability density histograms. Besides, we further contrast the cluster solutions of the system under local and global coupling, respectively. The subordinate state resetting process enriches the firing mode of the proposed Hindmarsh-Rose neural networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...