Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 2(9): 937-950, 2022 09.
Article in English | MEDLINE | ID: mdl-36922936

ABSTRACT

CLDN18.2 (Claudin18.2)-targeting therapeutic antibodies have shown promising clinical efficacy in approximately 30% of gastric cancers expressing high levels of CLDN18.2 and less pronounced activity in low expressing malignancies. Here, we report that ZL-1211 is a mAb targeting CLDN18.2 engineered to promote enhanced antibody-dependent cellular cytotoxicity (ADCC) with the goal of achieving more potent activity in a wider spectrum of high- and low-CLDN18.2 expressing tumors. ZL-1211 demonstrated more robust in vitro ADCC activity than clinical benchmark not only in CLDN18.2-high but also CLDN18.2-low expressing gastric tumor cell lines. Greater antitumor efficacy was also observed in mouse xenograft models. Natural killer (NK) cell played critical roles in ZL-1211 efficacy and NK-cell depletion abrogated ZL-1211-mediated ADCC activity in vitro. ZL-1211 efficacy in vivo was also dependent on the presence of an NK compartment. Strikingly, NK cells strongly induced an inflammatory response in response to ZL-1211 treatment, including increased IFNγ, TNFα, and IL6 production, and were recruited into tumor microenvironment in patient-derived gastric tumors expressing CLDN18.2 upon ZL-1211 treatment to lyse the tumor cells. Taken together, our data suggest that ZL-1211 more effectively targets CLDN18.2-high gastric cancers as well as -low expressing malignancies that may not be eligible for treatment with the leading clinical benchmark by inducing enhanced ADCC response and activating NK cells with robust inflammation to enhance antitumor efficacy. Clinical activity of ZL-1211 is currently under evaluation in a phase I clinical trial (NCT05065710). Significance: ZL-1211, anti-CLDN18.2 therapeutic antibody can target CLDN18.2-high as well as -low gastric cancers that may not be eligible for treatment with clinical benchmark. ZL-1211 treatment induces NK-cell activation with robust inflammation to further activate antitumor immunity in tumor microenvironment.


Subject(s)
Stomach Neoplasms , Mice , Animals , Humans , Stomach Neoplasms/drug therapy , Antibody-Dependent Cell Cytotoxicity , Killer Cells, Natural , Cell Line, Tumor , Inflammation/drug therapy , Tumor Microenvironment
2.
Acta Pharm Sin B ; 8(6): 889-899, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30505658

ABSTRACT

Interferons (IFNs) are cytokines with fundamental roles in resistance to infections, cancer and other diseases. Type-I IFNs, interferon α (IFN-α) and interferon ß (IFN-ß), act through a shared receptor complex (IFNAR) comprised of IFNAR1 and IFNAR2 subunits. Binding of type-I IFN to IFNAR1 will robustly activate Janus activated kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Aberrant activation of the type-I IFN response results in a spectrum of disorders called interferonopathies. The purpose of this research is to develop an assay for high-throughput screening (HTS) of small molecule inhibitors of the type-I IFN signaling pathway. Inhibition of type-I IFN signaling can be beneficial in terms of therapeutic use and understanding the underlying mechanism of action. We report here a HTS campaign with the secreted embryonic alkaline phosphatase (SEAP) reporter gene assay against 32,000 compounds which yielded 25 confirmed hits. These compounds were subsequently characterized for their cytotoxicity, effects on STAT phosphorylation and activities in IFN regulatory factor (IRF) transcription.

3.
Acta Pharmacol Sin ; 39(12): 1902-1912, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30038340

ABSTRACT

The serum and glucocorticoid-regulated kinase (SGK) family has been implicated in the regulation of many cellular processes downstream of the PI3K pathway. It plays a crucial role in PI3K-mediated tumorigenesis, making it a potential therapeutic target for cancer. SGK family consists of three isoforms (SGK1, SGK2, and SGK3), which have high sequence homology in the kinase domain and similar substrate specificity with the AKT family. In order to identify novel compounds capable of inhibiting SGK3 activity, a high-throughput screening campaign against 50,400 small molecules was conducted using a fluorescence-based kinase assay that has a Z' factor above 0.5. It identified 15 hits (including nitrogen-containing aromatic, flavone, hydrazone, and naphthalene derivatives) with IC50 values in the low micromolar to sub-micromolar range. Four compounds with a similar scaffold (i.e., a hydrazone core) were selected for structural modification and 18 derivatives were synthesized. Molecular modeling was then used to investigate the structure-activity relationship (SAR) and potential protein-ligand interactions. As a result, a series of SGK inhibitors that are active against both SGK1 and SGK3 were developed and important functional groups that control their inhibitory activity identified.


Subject(s)
Immediate-Early Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Catalytic Domain , Cell Line, Tumor , Enzyme Assays , Humans , Immediate-Early Proteins/chemistry , Molecular Docking Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
4.
Oncotarget ; 8(4): 5965-5975, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-27999203

ABSTRACT

Hepatocellular carcinoma (HCC) causes significant medical burdens worldwide. Diagnosis, especially in the early stages, is still challenging. Therapeutic options are limited and often ineffective. Although several risk factors have been known important for development of HCC, the molecular basis of the process is rather complex and has not been fully understood. We have found that a subpopulation of HCC cells which are resistant to oncolytic parvovirus H1 superinfection highly express serine protease inhibitor Kazal-type 6 (SPINK6). This protein is specifically reduced in all HCC cell lines and tissues we analyzed. When upregulated, SPINK6 could suppress the malignant phenotypes of the HCC cells in several in vitro models. The putative tumor suppression role of SPINK6 is, however, independent of its protease inhibitory activity. To suppress the malignancy of HCC cells, SPINK6 has to be secreted to trigger signals which regulate an intracellular signaling molecule, ERK1/2, as well as a series of downstream factors involved in cell cycle progression, apoptosis and migration. Our study supports that SPINK6 is an important tumor suppressor in liver, and further investigations may help develop more effective diagnostic and therapeutic approaches.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Down-Regulation , Liver Neoplasms/metabolism , Serine Peptidase Inhibitors, Kazal Type/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , MAP Kinase Signaling System , Mice , Neoplasm Transplantation
5.
Oncotarget ; 7(11): 12823-39, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26871479

ABSTRACT

G protein-coupled receptors (GPCRs) represent the largest membrane protein family implicated in the therapeutic intervention of a variety of diseases including cancer. Exploration of biological actions of orphan GPCRs may lead to the identification of new targets for drug discovery. This study investigates potential roles of GPR160, an orphan GPCR, in the pathogenesis of prostate cancer. The transcription levels of GPR160 in the prostate cancer tissue samples and cell lines, such as PC-3, LNCaP, DU145 and 22Rv1 cells, were significantly higher than that seen in normal prostate tissue and cells. Knockdown of GPR160 by lentivirus-mediated short hairpin RNA constructs targeting human GPR160 gene (ShGPR160) resulted in prostate cancer cell apoptosis and growth arrest both in vitro and in athymic mice. Differential gene expression patterns in PC-3 cells infected with ShGPR160 or scramble lentivirus showed that 815 genes were activated and 1193 repressed. Functional annotation of differentially expressed genes (DEGs) revealed that microtubule cytoskeleton, cytokine activity, cell cycle phase and mitosis are the most evident functions enriched by the repressed genes, while regulation of programmed cell death, apoptosis and chemotaxis are enriched significantly by the activated genes. Treatment of cells with GPR160-targeting shRNA lentiviruses or duplex siRNA oligos increased the transcription of IL6 and CASP1 gene significantly. Our data suggest that the expression level of endogenous GPR160 is associated with the pathogenesis of prostate cancer.


Subject(s)
Apoptosis/physiology , Cell Cycle Checkpoints/physiology , Prostatic Neoplasms/pathology , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line, Tumor , Gene Expression Profiling , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prostatic Neoplasms/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...