Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Environ Toxicol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717027

ABSTRACT

Cadmium (Cd) and excess molybdenum (Mo) are multiorgan toxic, but the detrimental impacts of Cd and/or Mo on poultry have not been fully clarified. Thence, a 16-week sub-chronic toxic experiment was executed with ducks to assess the toxicity of Cd and/or Mo. Our data substantiated that Cd and Mo coexposure evidently reduced GSH-Px, GSH, T-SOD, and CAT activities and elevated H2O2 and MDA concentrations in myocardium. What is more, the study suggested that Cd and Mo united exposure synergistically elevated Fe2+ content in myocardium and activated AMPK/mTOR axis, then induced ferroptosis by obviously upregulating ACSL4, PTGS2, and TFRC expression levels and downregulating SLC7A11, GPX4, FPN1, FTL1, and FTH1 expression levels. Additionally, Cd and Mo coexposure further caused excessive ferritinophagy by observably increasing autophagosomes, the colocalization of endogenous FTH1 and LC3, ATG5, ATG7, LC3II/LC3I, NCOA4, and FTH1 expression levels. In brief, this study for the first time substantiated that Cd and Mo united exposure synergistically induced ferroptosis and excess ferritinophagy by AMPK/mTOR axis, finally augmenting myocardium injure in ducks, which will offer an additional view on united toxicity between two heavy metals on poultry.

2.
Front Vet Sci ; 11: 1375852, 2024.
Article in English | MEDLINE | ID: mdl-38756509

ABSTRACT

Jingmen tick virus (JMTV) is a newly identified segmented flavivirus that has been recognized in multiple hosts, such as humans, buffalos, bats, rodents, mosquitos and ticks. Various clinical cases and studies manifested that JMTV is a true arbovirus with wide host spectrum and showed potential threats toward public health. JMTV has been reported in multiple countries in Asia, Europe, Africa, and America. Moreover, wild boars serve as an important intermediary between humans and the wild ecological system. In China, it has been reported in nine provinces, while the prevalence and the distribution of JMTV in most regions including Jiangxi Province are still unknown. Thus, to profile the distribution of JMTV in Jiangxi Province, an epidemiological investigation was carried out from 2020 to 2022. In current study, 66 ticks were collected from 17 wild boars in Jiangxi Province. The results showed that 12 out of 66 ticks were JMTV positive, indicating JMTV is prevalent in ticks and boars in Jiangxi Province. The genome sequences of JMTV strain WY01 were sequenced to profile viral evolution of JMTV in China. Phylogenetic analysis divided JMTV strains into two genotypes, Group I and Group II. WY01 belongs to Group II and it shares the closest evolutionary relationship with the Japan strains rather than the strains from neighboring provinces in China suggesting that JMTV might have complex transmission routes. Overall, current study, for the first time, reported that JMTV is prevalent in Jiangxi Province and provided additional information concerning JMTV distribution and evolution in China.

3.
J Environ Sci (China) ; 142: 92-102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527899

ABSTRACT

Cadmium (Cd) and excess molybdenum (Mo) pose serious threats to animal health. Our previous study has determined that Cd and/or Mo exposure can cause ovarian damage of ducks, while the specific mechanism is still obscure. To further investigate the toxic mechanism of Cd and Mo co-exposure in the ovary, forty 8-day-old female ducks were randomly allocated into four groups for 16 weeks, and the doses of Cd and Mo in basic diet per kg were as follows: control group, Mo group (100 mg Mo), Cd group (4 mg Cd), and Mo + Cd group (100 mg Mo + 4 mg Cd). Cadmium sulfate 8/3-hydrate (CdSO4·8/3H2O) and hexaammonium molybdate ((NH4)6Mo7O24·4H2O) were the origins of Cd and Mo, respectively. At the 16th week of the experiment, all ovary tissues were collected for the detection of related indexes. The data indicated that Mo and/or Cd induced trace element disorders and Th1/Th2 balance to divert toward Th1 in the ovary, which activated endoplasmic reticulum (ER) stress and then provoked necroptosis through triggering RIPK1/RIPK3/MLKL signaling pathway, and eventually caused ovarian pathological injuries and necroptosis characteristics. The alterations of above indicators were most apparent in the joint group. Above all, this research illustrates that Mo and/or Cd exposure can initiate necroptosis through Th1/Th2 imbalance-modulated ER stress in duck ovaries, and Mo and Cd combined exposure aggravates ovarian injuries. This research explores the molecular mechanism of necroptosis caused by Mo and/or Cd, which reveals that ER stress attenuation may be a therapeutic target to alleviate necroptosis.


Subject(s)
Ducks , Molybdenum , Animals , Female , Molybdenum/toxicity , Ducks/metabolism , Cadmium/toxicity , Cadmium/metabolism , Ovary/metabolism , Necroptosis , Endoplasmic Reticulum Stress
4.
Environ Sci Pollut Res Int ; 31(18): 26510-26526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446297

ABSTRACT

Vanadium (V) plays a crucial role in normal cells, but excess V causes multi-organ toxicity, including neurotoxicity. Mitochondria-associated endoplasmic reticulum membrane (MAM) is a dynamic structure between endoplasmic reticulum (ER) and mitochondria that mediates ER quality control (ERQC). To explore the effects of excess V on MAM and ERQC in the brain, 72 ducks were randomly divided into two groups: the control group (basal diet) and the V group (30 mg V/kg basal diet). On days 22 and 44, brain tissues were collected for histomorphological observation and determination of trace element contents. In addition, the mRNA and protein levels of MAM and ERQC-related factors in the brain were analyzed. Results show that excessive V causes the imbalance of trace elements, the integrity disruption of MAM, rupture of ER and autophagosomes formation. Moreover, it inhibits IP3R and VDAC1 co-localization, down-regulates the expression levels of MAM-related factors, but up-regulates the expression levels of ERQC and autophagy related factors. Together, results indicate that V exposure causes disruption of MAM and activates ERQC, which is further causing autophagy.


Subject(s)
Brain , Ducks , Endoplasmic Reticulum , Mitochondria , Vanadium , Animals , Brain/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Vanadium/toxicity , Mitochondria/drug effects , Autophagy/drug effects
5.
Poult Sci ; 103(5): 103653, 2024 May.
Article in English | MEDLINE | ID: mdl-38537407

ABSTRACT

Cadmium (Cd) and high molybdenum (Mo) are injurious to the body. Previous research has substantiated that Cd and Mo exposure caused testicular injury of ducks, but concrete mechanism is not fully clarified. To further survey the toxicity of co-exposure to Cd and Mo in testis, 40 healthy 8-day-old Shaoxing ducks (Anas platyrhyncha) were stochasticly distributed to 4 groups and raised with basic diet embracing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. At the 16th wk, testis tissues were gathered. The characteristic ultrastructural changes related to apoptosis and ferroptosis were observed in Mo or Cd or both groups. Besides, Mo or Cd or both repressed nuclear factor erythroid 2-related factor 2 (Nrf2) pathway via decreasing Nrf2, Heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), Glutamate-cysteine ligase catalytic subunit (GCLC) and Glutamate-cysteine ligase modifier subunit (GCLM) mRNA expression of and Nrf2 protein expression, then stimulated apoptosis by elevating Bcl-2 antagonist/killer-1 (Bak-1), Bcl-2-associated X-protein (Bax), Cytochrome complex (Cyt-C), caspase-3 mRNA expression, cleaved-caspase-3 protein expression and apoptosis rate, as well as reducing B-cell lymphoma-2 (Bcl-2) mRNA expression and ratio of Bcl-2 to Bax, and triggered ferroptosis by upregulating Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), transferrin receptor (TFR1) and Prostaglandin-Endoperoxide Synthase 2 (PTGS2) expression levels, and downregulating ferritin heavy chain 1 (FTH1), ferritin light chain 1 (FTL1), ferroportin 1 (FPN1), solute carrier family 7 member 11 (SCL7A11) and glutathione peroxidase 4 (GPX4) expression levels. The most obvious changes of these indexes were observed in co-treated group. Altogether, the results announced that Mo or Cd or both evoked apoptosis and ferroptosis by inhibiting Nrf2 pathway in the testis of ducks, and co-exposure to Mo and Cd exacerbated these variations.


Subject(s)
Apoptosis , Cadmium , Ducks , Ferroptosis , Molybdenum , NF-E2-Related Factor 2 , Signal Transduction , Testis , Animals , Male , Cadmium/toxicity , Testis/drug effects , Testis/metabolism , Apoptosis/drug effects , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Signal Transduction/drug effects , Molybdenum/pharmacology , Avian Proteins/metabolism , Avian Proteins/genetics
6.
Biol Trace Elem Res ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467966

ABSTRACT

Excessive doses of molybdenum (Mo) and cadmium (Cd) have toxic effects on animals. Nevertheless, the reproductive toxicity elicited by Mo and Cd co-exposure remains obscure. To evaluate the co-induce toxic impacts of Mo and Cd on ovaries, 8-day-old 40 healthy ducks were stochastically distributed to four groups and were raised a basal diet supplemented with Cd (4 mg/kg Cd) and/or Mo (100 mg/kg Mo). In the 16th week, ovary tissues were gathered. The data revealed that Mo and/or Cd decreased GSH content, CAT, T-SOD, and GSH-Px activities and increased MDA and H2O2 levels. Moreover, there was a significant decrease in nuclear Nrf2 protein level and its related downstream factors, while cytoplasmic Nrf2 protein level showed a substantial increase. Additionally, a marked elevation was observed in ferrous ion content and TFRC, GCLC, SLC7A11, ACSL4, and PTGS2 expression levels, while FTH1, FTL1, FPN1, and GPX4 expression levels were conversely reduced. These indicators exhibited more marked changes in the joint exposure group. In brief, our results announced that Mo and/or Cd resulted in oxidative stress and ferroptosis in duck ovaries. Synchronously, the Cd and Mo mixture intensified the impacts.

7.
Cell Mol Life Sci ; 81(1): 126, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470510

ABSTRACT

Stress-induced intestinal epithelial injury (IEI) and a delay in repair in infancy are predisposing factors for refractory gut diseases in adulthood, such as irritable bowel syndrome (IBS). Hence, it is necessary to develop appropriate mitigation methods for mammals when experiencing early-life stress (ELS). Weaning, as we all know, is a vital procedure that all mammalian newborns, including humans, must go through. Maternal separation (MS) stress in infancy (regarded as weaning stress in animal science) is a commonly used ELS paradigm. Drinking silicon-rich alkaline mineral water (AMW) has a therapeutic effect on enteric disease, but the specific mechanisms involved have not been reported. Herein, we discover the molecular mechanism by which silicon-rich AMW repairs ELS-induced IEI by maintaining intestinal stem cell (ISC) proliferation and differentiation through the glucagon-like peptide (GLP)2-Wnt1 axis. Mechanistic study showed that silicon-rich AMW activates GLP2-dependent Wnt1/ß-catenin pathway, and drives ISC proliferation and differentiation by stimulating Lgr5+ ISC cell cycle passage through the G1-S-phase checkpoint, thereby maintaining intestinal epithelial regeneration and IEI repair. Using GLP2 antagonists (GLP23-33) and small interfering RNA (SiWnt1) in vitro, we found that the GLP2-Wnt1 axis is the target of silicon-rich AMW to promote intestinal epithelium regeneration. Therefore, silicon-rich AMW maintains intestinal epithelium regeneration through the GLP2-Wnt1 axis in piglets under ELS. Our research contributes to understanding the mechanism of silicon-rich AMW promoting gut epithelial regeneration and provides a new strategy for the alleviation of ELS-induced IEI.


Subject(s)
Adverse Childhood Experiences , Mineral Waters , Infant, Newborn , Humans , Animals , Swine , Silicon/metabolism , Maternal Deprivation , Intestinal Mucosa/metabolism , Mammals
8.
Sci Total Environ ; 922: 171015, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38369134

ABSTRACT

Atrazine (ATZ) is the most prevalent herbicide that has been widely used in agriculture to control broadleaf weeds and improve crop yield and quality. The heavy use of ATZ has caused serious environmental pollution and toxicity to human health. Lycopene (LYC), is a carotenoid that exhibits numerous health benefits, such as prevention of cardiovascular diseases and nephropathy. However, it remains unclear that whether ATZ causes cardiorenal injury or even cardiorenal syndrome (CRS) and the beneficial role of LYC on it. To test this hypothesis, mice were treated with LYC and/or ATZ for 21 days by oral gavage. This study demonstrated that ATZ exposure caused cardiorenal morphological alterations, and several inflammatory cell infiltrations mediated by activating NF-κB signaling pathways. Interestingly, dysregulation of MAPK signaling pathways and MAPK phosphorylation caused by ATZ have been implicated in cardiorenal diseases. ATZ exposure up-regulated cardiac and renal injury associated biomarkers levels that suggested the occurrence of CRS. However, these all changes were reverted, and the phenomenon of CAR was disappeared by LYC co-treatment. Based on our findings, we postulated a novel mechanism to elucidate pesticide-induced CRS and indicated that LYC can be a preventive and therapeutic agent for treating CRS by targeting MAPK/NF-κB signaling pathways.


Subject(s)
Atrazine , Cardio-Renal Syndrome , Humans , Mice , Animals , Lycopene/metabolism , Atrazine/toxicity , NF-kappa B , Cardio-Renal Syndrome/chemically induced , Oxidative Stress
9.
Environ Toxicol ; 39(1): 172-183, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37676969

ABSTRACT

Excess molybdenum (Mo) is harmful to animals, but its nephrotoxicity has not been comprehensively explained. To appraise the influences of excess Mo on Ca homeostasis and apoptosis via PLC/IP3 /IP3 R axis, primary duck renal tubular epithelial cells were exposed to 480 µM and 960 µM Mo, and joint of 960 µM Mo and 10 µM 2-APB or 0.125 µM U-73122 for 12 h (U-73122 pretreated for 1 h), respectively. The data revealed that the increment of [Ca2+ ]c induced by Mo mainly originated from intracellular Ca storage. Mo exposure reduced [Ca2+ ]ER , elevated [Ca2+ ]mit , [Ca2+ ]c , and the expression of Ca homeostasis-related factors (Calpain, CaN, CRT, GRP94, GRP78 and CaMKII). 2-APB could effectively reverse subcellular Ca2+ redistribution by inhibiting IP3 R, which confirmed that [Ca2+ ]c overload induced by Mo originated from ER. Additionally, PLC inhibitor U-73122 remarkably mitigated the change, and dramatically reduced the number of apoptotic cells, the expression of Bak-1, Bax, cleaved-Caspase-3/Caspase-3, and notably increased the expression of Bcl-xL, Bcl-2, and Bcl-2/Bax ratio. Overall, the results confirmed that the Ca2+ liberation of ER via PLC/IP3 /IP3 R axis was the main cause of [Ca2+ ]c overload, and then stimulated apoptosis in duck renal tubular epithelial cells.


Subject(s)
Ducks , Molybdenum , Animals , Ducks/metabolism , Molybdenum/toxicity , Molybdenum/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Epithelial Cells , Apoptosis , Calcium/metabolism
10.
J Environ Sci (China) ; 138: 572-584, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135421

ABSTRACT

Birth defects have become a public health concern. The hazardous environmental factors exposure to embryos could increase the risk of birth defects. Cadmium, a toxic environmental factor, can cross the placental barrier during pregnancy. Pregnant woman may be subjected to cadmium before taking precautionary protective actions. However, the link between birth defects and cadmium remains obscure. Cadmium exposure can induce excessive apoptosis in neuroepithelium during embryonic development progresses. Cadmium exposure activated the p53 via enhancing the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and reactive oxygen species' (ROS) level. And cadmium decreases the level of Paired box 3 (Pax3) and murine double minute 2 (Mdm2), disrupting the process of p53 ubiquitylation. And p53 accumulation induced excessive apoptosis in neuroepithelium during embryonic development progresses. Excessive apoptosis led to the failure of neural tube closure. The study emphasizes that environmental materials may increase the health risk for embryos. Cadmium caused the failure of neural tube closure during early embryotic day. Pregnant women may be exposed by cadmium before taking precautionary protective actions, because of cadmium concentration-containing foods and environmental tobacco smoking. This suggests that prenatal cadmium exposure is a threatening risk factor for birth defects.


Subject(s)
Neural Tube Defects , Female , Pregnancy , Humans , Animals , Mice , Neural Tube Defects/chemically induced , Neural Tube Defects/metabolism , Cadmium/toxicity , Cadmium/metabolism , Neural Tube/metabolism , PAX3 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , Placenta/metabolism , Apoptosis
11.
Sci Total Environ ; 912: 169374, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104808

ABSTRACT

Molybdenum (Mo) is an essential nutrient in living organisms. Although numerous researchers have noticed the health damage caused by excessive Mo, the underlying mechanism of excessive Mo-induced nephrotoxicity remains poorly understood. A gene crosstalk called competitive endogenous RNAs (ceRNAs) can interpret many regulatory mechanisms molecularly. But there are few researches have tried to explain the damage mechanism of excess Mo to organisms through ceRNAs network. To clarify this, the study explored the changes in lncRNAs and miRNAs expression profiles in the kidney of ducks exposed to excess Mo for 16 weeks. The sequencing results showed that Mo exposure caused differential expression of 144 lncRNAs and 14 miRNAs. The occurrence of inflammation through the JAK/STAT axis was observed and the lncRNA-00072124/miR-308/OSMR axis was verified by a double luciferase reporter assay. Overexpression of miR-308 and RNA interference of OSMR reduced Mo-induced inflammatory factors, while miR-308 knockdown showed the opposite effect. Simultaneously, lncRNA-00072124 affected OSMR function as a ceRNA. Taken together, these results concluded that Mo exposure activated the JAK/STAT axis and induced inflammation mediated by the lncRNA-00072124/miR-308/OSMR crosstalk. The results might provide new views for revealing the toxic effects of excess Mo in duck kidneys.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Ducks , RNA, Long Noncoding/genetics , Molybdenum/toxicity , MicroRNAs/genetics , Kidney/metabolism , Inflammation/chemically induced
12.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139070

ABSTRACT

Hexavalent chromium (Cr(VI)) is a hazardous substance that poses significant risks to environmental ecosystems and animal organisms. However, the specific consequences of Cr(VI) exposure in terms of liver damage remain incompletely understood. This study aims to elucidate the mechanism by which Cr(VI) disrupts mitochondrial dynamics, leading to hepatic injury in ducks. Forty-eight healthy 8-day-old ducks were divided into four groups and subjected to diets containing varying doses of Cr(VI) (0, 9.28, 46.4, and 232 mg/kg) for 49 days. Our results demonstrated that Cr(VI) exposure resulted in disarranged liver lobular vacuolation, along with increasing the serum levels of ALT, AST, and AKP in a dose-dependent manner, which indicated liver damage. Furthermore, Cr(VI) exposure induced oxidative stress by reducing the activities of T-SOD, SOD, GSH-Px, GSH, and CAT, while increasing the contents of MDA and H2O2. Moreover, Cr(VI) exposure downregulated the activities of CS and MDH, resulting in energy disturbance, as evidenced by the reduced AMPK/p-AMPK ratio and PGC-1α protein expression. Additionally, Cr(VI) exposure disrupted mitochondrial dynamics through decreased expression of OPA1, Mfn1, and Mfn2 and increased expression of Drp-1, Fis1, and MFF proteins. This disruption ultimately triggered mitochondria-mediated apoptosis, as evidenced by elevated levels of caspase-3, Cyt C, and Bax, along with decreased expression of Bcl-2 and the Bcl-2/Bax ratio, at both the protein and mRNA levels. In summary, this study highlights that Cr(VI) exposure induces oxidative stress, inhibits the AMPK-PGC-1α pathway, disrupts mitochondrial dynamics, and triggers liver cell apoptosis in ducks.


Subject(s)
AMP-Activated Protein Kinases , Ducks , Animals , bcl-2-Associated X Protein/metabolism , Mitochondrial Dynamics , Ecosystem , Hydrogen Peroxide , Liver/metabolism , Apoptosis , Chromium/toxicity , Proto-Oncogene Proteins c-bcl-2/genetics , Superoxide Dismutase
13.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139133

ABSTRACT

Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.


Subject(s)
Berberine , Fatty Liver , Gastrointestinal Microbiome , Animals , Female , Berberine/pharmacology , Berberine/therapeutic use , Berberine/metabolism , Diet, Protein-Restricted , Chickens , Fatty Liver/drug therapy , Fatty Liver/etiology , Fatty Liver/prevention & control , Liver/metabolism , Bile Acids and Salts/metabolism
14.
Poult Sci ; 102(12): 103013, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37856907

ABSTRACT

Vanadium (V) is an essential mineral element in animals, but excessive V can lead to many diseases, affecting the health of humans and animals. However, the molecular crosstalk between mitochondria-associated endoplasmic reticulum membranes (MAMs) and inflammation under V exposure is still at the exploratory stage. This study was conducted to determine the molecular crosstalk between MAMs and inflammation under V exposure in ducks. In this study, duck hepatocytes were treated with NaVO3 (0 µM, 100 µM, and 200 µM) and 2-aminoethyl diphenyl borate (2-APB) (IP3R inhibitor) alone or in combination for 24 h. The data showed that V exposure-induced cell vacuolization, enlarged intercellular space, and decreased density and viability. Meanwhile, hydrogen peroxide (H2O2), malonaldehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and reactive oxygen species (ROS) levels were upregulated under V treatment. In addition, excessive V could lead to a marked reduction in the MAMs structure, destruction of the membrane structure and overload of intracellular Ca2+ and mitochondrial Ca2+. Moreover, V treatment resulted in notable upregulation of the levels of MAMs-relevant factors (IP3R, Mfn2, Grp75, MCU, VDAC1) but downregulated the levels of IL-18, IL-1ß, and lactate dehydrogenase (LDH) in the cell supernatant. Additionally, it also significantly elevated the levels of inflammation-relevant factors (NLRP3, ASC, caspase-1, MAVS, IL-18, IL-1ß, and TXNIP). However, the inhibition of IP3R expression attenuated the V-induced variations in the above indicators. Collectively, our results revealed that the maintenance of calcium homeostasis could protect duck hepatocytes from V-induced inflammation injury via MAMs.


Subject(s)
Calcium , Ducks , Humans , Animals , Calcium/metabolism , Ducks/metabolism , Vanadium , Interleukin-18/metabolism , Hydrogen Peroxide , Chickens/metabolism , Endoplasmic Reticulum/metabolism , Hepatocytes/metabolism , Calcium, Dietary/metabolism , Inflammation/chemically induced , Inflammation/veterinary , Inflammation/metabolism
15.
Nat Commun ; 14(1): 5499, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679330

ABSTRACT

The emergence of caste-differentiated colonies, which have been defined as 'superorganisms', in ants, bees, and wasps represents a major transition in evolution. Lifetime mating commitment by queens, pre-imaginal caste determination and lifetime unmatedness of workers are key features of these animal societies. Workers in superorganismal species like honey bees and many ants have consequently lost, or retain only vestigial spermathecal structures. However, bumble bee workers retain complete spermathecae despite 25-40 million years since their origin of superorganismality, which remains an evolutionary mystery. Here, we show (i) that bumble bee workers retain queen-like reproductive traits, being able to mate and produce colonies, underlain by queen-like gene expression, (ii) the social conditions required for worker mating, and (iii) that these abilities may be selected for by early queen-loss in these annual species. These results challenge the idea of lifetime worker unmatedness in superorganisms, and provide an exciting new tool for the conservation of endangered bumble bee species.


Subject(s)
Bees , Bees/anatomy & histology , Bees/genetics , Bees/physiology , Male , Female , Animals , Gene Expression , Sexual Behavior, Animal , Biological Evolution
16.
Sci Total Environ ; 902: 166074, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37544436

ABSTRACT

Superfluous molybdenum (Mo) and cadmium (Cd) in the environment are detrimental to organisms through their accumulation. The NF-κB/TNF-α axis plays a vital part in regulating necroptosis and apoptosis. However, the impacts of Mo and/or Cd on myocardium injury in ducks and the function of NF-κB/TNF-α axis are not clear in the process. In this research, ducks exposed to different dosages of Mo and/or Cd were applied as the study object. The findings substantiated that the accumulation of Mo and/or Cd caused elements imbalance and necroptosis in myocardial tissue. As p-NF-κB/TNF-α expression up-regulated, RIPK1/RIPK3/p-MLKL expression significantly increased in all treatment groups, while the expression of c-caspase-8/3 markedly decreased. Moreover, apoptosis rate obviously decreased in Cd treated groups and clearly elevated in Mo group. Mitochondria-mediated apoptosis was activated by excessive Mo and inhibited by Mo + Cd, but Cd exposure alone had little effect on it. Collectively, our research confirmed that Mo and/or Cd evoked necroptosis via NF-κB/TNF-α axis, and decreased death receptor-mediated apoptosis in duck myocardium, the impacts of Mo and/or Cd on mitochondrial-mediated apoptosis were different. These results are significant for studying toxicology of Mo and/or Cd and preserving the ecosystem.


Subject(s)
Ducks , Molybdenum , Animals , Molybdenum/metabolism , Cadmium/metabolism , Tumor Necrosis Factor-alpha/metabolism , NF-kappa B , Necroptosis , Ecosystem , Apoptosis , Myocardium/metabolism
17.
Environ Pollut ; 334: 122207, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37467914

ABSTRACT

Molybdenum (Mo) is an essential trace element that exists in all tissues of the human body, but excessive Mo intake has a toxic effect. Cadmium (Cd) is a widely known and harmful heavy metal that exists in the environment. Although studies on Mo and Cd are available, it is still unknown how the combination of Mo and Cd causes pulmonary injury. Forty-eight sheep that were 2 months old were chosen and randomly separated into four groups as follows: Control group, Mo group, Cd group, and Mo + Cd group. The experiment lasted 50 days. The results showed that Mo and/or Cd caused significant pathological damage and oxidative stress in the lungs of sheep. Moreover, Mo and/or Cd exposure could downregulate the expression levels of xCT (SLC7A11 and SLC3A2), GPX4 and FTH-1 and upregulate the expression levels of PTGS2 and NCOA4, which led to iron overload and ferroptosis. Ferroptosis induced Wnt/ß-catenin-mediated fibrosis by elevating the expression levels of Caveolin-1 (CAV-1), Wnt 1, Wnt3a, ß-catenin (CTNNB1), TCF4, Cyclin D1, mmp7, α-SMA (ACTA2), Collagen 1 (COL1A1) and Vimentin. These changes were particularly noticeable in the Mo and Cd combination group. In conclusion, these data demonstrated that Mo and/or Cd exposure led to lung ferroptosis by inhibiting the SLC7A11/GSH/GPX4 axis, which in turn increases CAV-1 expression and subsequently activates the Wnt/ß-catenin pathway, leading to fibrosis in sheep lungs.


Subject(s)
Ferroptosis , Molybdenum , Humans , Animals , Sheep , Infant , Molybdenum/toxicity , Cadmium/toxicity , beta Catenin , Caveolin 1 , Fibrosis , Lung
18.
Chem Biol Interact ; 382: 110617, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37385403

ABSTRACT

Accumulation of the heavy metals molybdenum (Mo) and cadmium (Cd) in the liver can induce organelle damage and inflammation, resulting in hepatotoxicity. The effect of Mo and/or Cd on sheep hepatocytes was investigated by determining the relationship between the mitochondria-associated endoplasmic reticulum membrane (MAM) and NLRP3 inflammasome. Sheep hepatocytes were divided into four groups: the control group, Mo group (600 µM Mo), Cd group (4 µM Cd) and Mo + Cd group (600 µM Mo+4 µM Cd). The results showed that Mo and/or Cd exposure increased the levels of lactate dehydrogenase (LDH) and nitric oxide (NO) in the cell culture supernatant, elevated the levels of intracellular Ca2+ and mitochondrial Ca2+, downregulated the expression of MAM-related factors (IP3R, GRP75, VDAC1, PERK, ERO1-α, Mfn1, Mfn2, ERP44), shortened the length of the MAM and reduced the formation of the MAM structure, eventually causing MAM dysfunction. Moreover, the expression levels of NLRP3 inflammasome-related factors (NLRP3, Caspase1, IL-1ß, IL-6, TNF-α) were also dramatically increased after Mo and Cd exposure, triggering NLRP3 inflammasome production. However, an IP3R inhibitor, 2-APB treatment significantly alleviated these changes. Overall, the data indicate that Mo and Cd coexposure leads to structural disruption and dysfunction of MAM, disrupts cellular Ca2+ homeostasis, and increases NLRP3 inflammasome production in sheep hepatocytes. However, the inhibition of IP3R alleviates NLRP3 inflammasome production induced by Mo and Cd.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Sheep , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cadmium/toxicity , Molybdenum/toxicity , Hepatocytes , Endoplasmic Reticulum/metabolism , Mitochondria
19.
Environ Sci Pollut Res Int ; 30(31): 77127-77138, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37253910

ABSTRACT

Copper (Cu) can be harmful to host physiology at high levels, although it is still unclear exactly how it causes nephrotoxicity. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress are associated with heavy metal intoxication. Meanwhile, mitochondria and ER are connected via mitochondria-associated ER membranes (MAM). In order to reveal the crosstalk between them, a total of 144 1-day-old Peking ducks were randomly divided into four groups: control (basal diet), 100 mg/kg Cu, 200 mg/kg Cu, and 400 mg/kg Cu groups. Results found that excessive Cu disrupted MAM integrity, reduced the co-localization of IP3R and VDAC1, and significantly changed the MAM-related factors levels (Grp75, Mfn2, IP3R, MCU, PACS2, and VDAC1), leading to MAM dysfunction. We further found that Cu exposure induced mitochondrial dysfunction via decreasing the ATP level and the expression levels of COX4, TOM20, SIRT1, and OPA1 and up-regulating Parkin expression level. Meanwhile, Cu exposure dramatically increased the expression levels of Grp78, CRT, and ATF4, resulting in ER stress. Overall, these findings demonstrated MAM plays the critical role in Cu-induced kidney mitochondrial dysfunction and ER stress, which deepened our understanding of Cu-induced nephrotoxicity.


Subject(s)
Copper , Ducks , Animals , Copper/toxicity , Copper/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Kidney/metabolism , Endoplasmic Reticulum Stress
20.
J Nutr Biochem ; 113: 109266, 2023 03.
Article in English | MEDLINE | ID: mdl-36610486

ABSTRACT

Di (2-ethylhexyl) phthalate (DEHP) is commonly used as a plasticizer in plastic products, and due to its unique chemical composition, it frequently dissolves and enters the environment. Lycopene as a natural carotenoid has been shown to have powerful antioxidant capacity and strong kidney protection. This study aimed to investigate the role of the interplay between oxidative stress and the classical pyroptosis pathway in LYC alleviating DEHP-induced renal injury. ICR mice were given DEHP (500 mg/kg/d or 1000 mg/kg/d) and/or LYC (5 mg/kg/d) for 28 days to explore the underlying mechanisms of this hypothesis. Our results indicated that DEHP caused the shedding of renal tubular epithelial cells, increased the content of kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the tissue, the decrease of antioxidant activity markers and the increase of oxidative stress indexes. It is gratifying that LYC alleviates DEHP-induced renal injury. The expression of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and its downstream target genes is improved in DEHP induced renal injury through LYC mediated protection. Meanwhile, LYC supplementation can inhibit DEHP-induced Caspase-1/NLRP3-dependent pyroptosis and inflammatory responses. Taken together, DEHP administration resulted in nephrotoxicity, but these changes ameliorated by LYC may through crosstalk between the Nrf2/Keap-1/NLRP3/Caspase-1 pathway. Our study provides new evidence that LYC protects against kidney injury caused by DEHP.


Subject(s)
Diethylhexyl Phthalate , Kidney , Lycopene , Pyroptosis , Animals , Mice , Antioxidants/pharmacology , Antioxidants/metabolism , Caspases/metabolism , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Kidney/metabolism , Kidney/pathology , Lycopene/pharmacology , Mice, Inbred ICR , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Pyroptosis/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...