Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 185: 108516, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447452

ABSTRACT

Climate change is endangering the soil carbon stock of alpine grasslands on the Qinghai-Tibetan Plateau (QTP), but the limited comprehension regarding the mechanisms that sustain carbon storage under hydrothermal changes increases the uncertainty associated with this finding. Here, we examined the relative abundance of soil microbial keystone taxa and their functional potentials, as well as their influence on soil carbon storage with increased precipitation across alpine grasslands on the QTP, China. The findings indicate that alterations in precipitation significantly decreased the relative abundance of the carbon degradation potentials of keystone taxa, such as chemoheterotrophs. The inclusion of keystone taxa and their internal functional potentials in the two best alternative models explained 70% and 63% of the variance in soil organic carbon (SOC) density, respectively. Moreover, we found that changes in chemoheterotrophs had negative effects on SOC density as indicated by a structural equation model, suggesting that some specialized functional potentials of keystone taxa are not conducive to the accumulation of carbon sink. Our study offers valuable insights into the intricate correlation between precipitation-induced alterations in soil microbial keystone taxa and SOC storage, highlighting a rough categorization is difficult to distinguish the hidden threats and the importance of incorporating functional potentials in SOC storage prediction models in response to changing climate.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , Grassland , Climate Change , China
2.
Sci Data ; 10(1): 68, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732526

ABSTRACT

Grazing intensity, characterized by high spatial heterogeneity, is a vital parameter to accurately depict human disturbance and its effects on grassland ecosystems. Grazing census data provide useful county-scale information; however, they do not accurately delineate spatial heterogeneity within counties, and a high-resolution dataset is urgently needed. Therefore, we built a methodological framework combining the cross-scale feature extraction method and a random forest model to spatialize census data after fully considering four features affecting grazing, and produced a high-resolution gridded grazing dataset on the Qinghai-Tibet Plateau in 1982-2015. The proposed method (R2 = 0.80) exhibited 35.59% higher accuracy than the traditional method. Our dataset were highly consistent with census data (R2 of spatial accuracy = 0.96, NSE of temporal accuracy = 0.96) and field data (R2 of spatial accuracy = 0.77). Compared with public datasets, our dataset featured a higher temporal resolution (1982-2015) and spatial resolution (over two times higher). Thus, it has the potential to elucidate the spatiotemporal variation in human activities and guide the sustainable management of grassland ecosystem.


Subject(s)
Ecosystem , Grassland , Humans , Human Activities , Tibet
3.
Sci Total Environ ; 862: 160828, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36509271

ABSTRACT

Vulnerability analysis is important for enhancing sustainability, especially for highly interlinked pastoral socio-ecological systems. This study presents a modified methodological framework for assessing the vulnerability of pastoral socio-ecological systems based on the interactions between social and ecological subsystems and their vulnerabilities. Altay Prefecture (Northwest China), a typical pastoral area located in Central Asia, was chosen for the case study. The ecological vulnerability index (EVI) and socio-ecological vulnerability index (SEVI) of Altay Prefecture from 2001 to 2018 were assessed and classified into five levels. The results showed that the distribution pattern of EVI was spatially heterogeneous, with EVI increasing from north to south and from west to east. The EVI was high in low-altitude deserts, decreased with altitude rising from 1300 m to 2200 m, and increased when the altitude exceeded 2200 m. The average EVI increased from 2001 to 2010 and decreased from 2010 to 2018, with the highest EVI in 2010 and the lowest in 2018. The SEVI of western counties was lower than that of eastern counties; the SEVI of all counties continuously decreased from 2001 to 2018, with a higher rate from 2010 to 2018. Social adaptive capacity, increased by the policies that aim at protecting grasslands and improving livelihoods, was the main influencing factor of the SEVI dynamic. These results will help to identify key areas with high EVI for grassland ecosystem management and strengthen the adaptive capacity for addressing vulnerability. Furthermore, the presented methodological framework can be adopted in vulnerability assessments of similar pastoral areas or natural resource-based socio-ecological systems.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Monitoring , China , Natural Resources , Environmental Monitoring/methods
4.
Sci Total Environ ; 630: 254-263, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29477823

ABSTRACT

Grazing exclusion has been proposed as a method of restoring degraded grassland ecosystems. However, its effectiveness remains poorly understood in mountain-basin grasslands in arid regions. Thus, we investigated the plant community characteristics, C and N storage levels, and soil organic carbon and total nitrogen concentrations and storage within the upper 0-40 cm soil layer in a grazed grassland (GG) and a fenced grassland (FG) with grazing exclusion in mountain meadow (MM) and temperate typical steppe (TTS) habitats in a mountain-basin ecosystem in an arid region of Central China, which are both vital grassland resources for livestock grazing and ecological conservation. In MM, our investigation revealed that grazing exclusion was beneficial to the productivity, coverage, height, diversity, and C and N storage of aboveground plants. However, grazing exclusion was not an effective option for soil C and N sequestration. In TTS, grazing exclusion effectively improved the plant productivity, coverage, height, plant and soil C and N sequestration, although it was not beneficial for maintaining plant diversity. Our findings suggest that reduced or rotational grazing may be a better choice than grazing exclusion in MM. In addition, considering the trade-off between biomass productivity and species diversity in TTS, short-term grazing exclusion should be considered. Additionally, grazing exclusion should be combined with other appropriate measures rather than operating on a standalone basis.

SELECTION OF CITATIONS
SEARCH DETAIL
...