Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Biol Psychiatry ; 95(9): 896-908, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37913973

ABSTRACT

BACKGROUND: Circular RNAs are highly enriched in the synapses of the mammalian brain and play important roles in neurological function by acting as molecular sponges of microRNAs. circAnk3 is derived from the 11th intron of the ankyrin-3 gene, Ank3, a strong genetic risk factor for neuropsychiatric disorders; however, the function of circAnk3 remains elusive. In this study, we investigated the function of circAnk3 and its downstream regulatory network for target genes in the hippocampus of mice. METHODS: The DNA sequence from which circAnk3 is generated was modified using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) technology, and neurobehavioral tests (anxiety and depression-like behaviors, social behaviors) were performed in circAnk3+/- mice. A series of molecular and biochemical assays were used to investigate the function of circAnk3 as a microRNA sponge and its downstream regulatory network for target genes. RESULTS: circAnk3+/- mice exhibited both anxiety-like behaviors and social deficits. circAnk3 was predominantly located in the cytoplasm of neuronal cells and functioned as a miR-7080-3p sponge to regulate the expression of Iqgap1. Inhibition of miR-7080-3p or restoration of Iqgap1 in the hippocampus ameliorated the behavioral deficits of circAnk3+/- mice. Furthermore, circAnk3 deficiency decreased the expression of the NMDA receptor subunit GluN2a and impaired the structural plasticity of dendritic synapses in the hippocampus. CONCLUSIONS: Our results reveal an important role of the circAnk3/miR-7080-3p/IQGAP1 axis in maintaining the structural plasticity of hippocampal synapses. circAnk3 might offer new insights into the involvement of circular RNAs in neuropsychiatric disorders.


Subject(s)
MicroRNAs , RNA, Circular , Mice , Animals , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hippocampus/metabolism , Brain/metabolism , Anxiety/genetics , Mammals/genetics , Mammals/metabolism
2.
Sci Adv ; 9(47): eadf2772, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000033

ABSTRACT

Biallelic genetic variants in N-acetylneuraminic acid synthase (NANS), a critical enzyme in endogenous sialic acid biosynthesis, are clinically associated with neurodevelopmental disorders. However, the mechanism underlying the neuropathological consequences has remained elusive. Here, we found that NANS mutation resulted in the absence of both sialic acid and protein polysialylation in the cortical organoids and notably reduced the proliferation and expansion of neural progenitors. NANS mutation dysregulated neural migration and differentiation, disturbed synapse formation, and weakened neuronal activity. Single-cell RNA sequencing revealed that NANS loss of function markedly altered transcriptional programs involved in neuronal differentiation and ribosomal biogenesis in various neuronal cell types. Similarly, Nans heterozygous mice exhibited impaired cortical neurogenesis and neurobehavioral deficits. Collectively, our findings reveal a crucial role of NANS-mediated endogenous sialic acid biosynthesis in regulating multiple features of human cortical development, thus linking NANS mutation with its clinically relevant neurodevelopmental disorders.


Subject(s)
N-Acetylneuraminic Acid , Oxo-Acid-Lyases , Humans , Mice , Animals , N-Acetylneuraminic Acid/metabolism , Oxo-Acid-Lyases/genetics , Organoids/metabolism , Mutation , Neurogenesis/genetics
3.
Front Pharmacol ; 14: 1242109, 2023.
Article in English | MEDLINE | ID: mdl-37795025

ABSTRACT

Introduction: Methamphetamine (METH) abuse by pregnant drug addicts causes toxic effects on fetal neurodevelopment; however, the mechanism underlying such effect of METH is poorly understood. Methods: In the present study, we applied three-dimensional (3D) neurospheres derived from the embryonic rat hippocampal tissue to investigate the effect of METH on neurodevelopment. Through the combination of whole genome transcriptional analyses, the involved cell signalings were identified and investigated. Results: We found that METH treatment for 24 h significantly and concentration-dependently reduced the size of neurospheres. Analyses of genome-wide transcriptomic profiles found that those down-regulated differentially expressed genes (DEGs) upon METH exposure were remarkably enriched in the cell cycle progression. By measuring the cell cycle and the expression of cell cycle-related checkpoint proteins, we found that METH exposure significantly elevated the percentage of G0/G1 phase and decreased the levels of the proteins involved in the G1/S transition, indicating G0/G1 cell cycle arrest. Furthermore, during the early neurodevelopment stage of neurospheres, METH caused aberrant cell differentiation both in the neurons and astrocytes, and attenuated migration ability of neurospheres accompanied by increased oxidative stress and apoptosis. Conclusion: Our findings reveal that METH induces an aberrant cell cycle arrest and neuronal differentiation, impairing the coordination of migration and differentiation of neurospheres.

4.
Genomics Proteomics Bioinformatics ; 21(3): 551-572, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209997

ABSTRACT

The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.


Subject(s)
Chromatin , Chromosomes , Humans , Animals , Chromatin/genetics , Genome , Primates/genetics , Morphine Derivatives
5.
ACS Chem Neurosci ; 14(9): 1585-1601, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37043723

ABSTRACT

Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.


Subject(s)
Methamphetamine , Mice , Animals , Methamphetamine/pharmacology , Nucleus Accumbens/metabolism , Cardiolipins/pharmacology , Mitochondrial Dynamics , Neurons/metabolism , Locomotion
6.
Front Pharmacol ; 14: 1084614, 2023.
Article in English | MEDLINE | ID: mdl-36865909

ABSTRACT

Objective: Tumor necrosis factor alpha inhibitors (TNFi) have shown substantial efficacy in alleviating and treating ankylosing spondylitis (AS). However, the heightened interest is accompanied by concerns over adverse events. In this meta-analysis, we analyzed both serious and common adverse events in patients treated with tumor necrosis factor alpha inhibitors compared with those in the placebo group. Methods: We searched for clinical trials in PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang Data, and VIP Data. Studies were selected based on strict inclusion and exclusion criteria. Only randomized, placebo-controlled trials were included in the final analysis. RevMan 5.4 software was used for performing meta-analyses. Results: A total of 18 randomized controlled trials recruiting 3,564 patients with ankylosing spondylitis were included, with overall moderate to high methodological quality. Compared with the placebo group, the incidences showed no difference and were only slightly increased numerically for serious adverse events, serious infections, upper respiratory tract infection, and malignancies in patients treated with tumor necrosis factor alpha inhibitors. However, tumor necrosis factor alpha inhibitor treatment significantly increased the incidence of overall adverse events, nasopharyngitis, headache, and injection-site reactions in ankylosing spondylitis patients when compared with placebo. Conclusion: The available data indicated that ankylosing spondylitis patients who received tumor necrosis factor alpha inhibitors had no significantly increased risks of serious adverse events when compared with the placebo group. However, tumor necrosis factor alpha inhibitors significantly increased the incidence rate of common adverse events, including nasopharyngitis, headache, and injection-site reactions. Large-scale and long-term follow-up clinical trials are still necessary to further investigate the safety of tumor necrosis factor alpha inhibitors in ankylosing spondylitis treatment.

7.
Cell Biol Toxicol ; 39(3): 771-793, 2023 06.
Article in English | MEDLINE | ID: mdl-34458952

ABSTRACT

Clarithromycin (CLA) has been widely used in the treatment of bacterial infection. Research reveals the adverse effects on the central nervous system among patients receiving CLA treatment; whereas, a relevant underlying mechanism remains considerably unclear. According to our research, an integrated lipidomic and transcriptomic analysis was applied to explore the effect of CLA on neurobehavior. CLA treatment caused anxiety-like behaviors dose-dependently during open field as well as elevated plus maze trials on mice. Transcriptomes and LC/MS-MS-based metabolomes were adopted for investigating how CLA affected lipidomic profiling as well as metabolic pathway of the cerebral cortex. CLA exposure greatly disturbed glycerophospholipid metabolism and the carbon chain length of fatty acids. By using whole transcriptome sequencing, we found that CLA significantly downregulated the mRNA expression of CEPT1 and CHPT1, two key enzymes involved in the synthesis of glycerophospholipids, supporting the findings from the lipidomic profiling. Also, CLA causes changes in neuronal morphology and function in vitro, which support the existing findings concerning neurobehavior in vivo. We speculate that altered glycerophospholipid metabolism may be involved in the neurobehavioral effect of CLA. Our findings contribute to understanding the mechanisms of CLA-induced adverse effects on the central nervous system. 1. Clarithromycin treatment caused anxiety-like behavior with dose-dependent response both in the open field and elevated plus maze test in mice; 2. Clarithromycin exposing predominately disturbed the metabolism of glycerophospholipids in the cerebral cortex of mice; 3. Clarithromycin application remarkably attenuated CEPT1 and CHPT1 gene expression, which participate in the last step in the synthesis of glycerophospholipids; 4. The altered glycerophospholipid metabolomics may be involved in the abnormal neurobehavior caused by clarithromycin.


Subject(s)
Clarithromycin , Lipidomics , Animals , Mice , Clarithromycin/pharmacology , Transcriptome , Glycerophospholipids/metabolism , Cerebral Cortex/metabolism
8.
Cereb Cortex ; 33(5): 1955-1971, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35584785

ABSTRACT

Sevoflurane exposure in the neonatal period causes long-term developmental neuropsychological dysfunction, including memory impairment and anxiety-like behaviors. However, the molecular mechanisms underlying such effects have not been fully elucidated. In this study, we investigated the effect of neonatal exposure to sevoflurane on neurobehavioral profiles in adolescent rats, and applied an integrated approach of lipidomics and proteomics to investigate the molecular network implicated in neurobehavioral dysfunction. We found that neonatal exposure to sevoflurane caused cognitive impairment and social behavior deficits in adolescent rats. Lipidomics analyses revealed that sevoflurane significantly remodeled hippocampal lipid metabolism, including lysophatidylcholine (LPC) metabolism, phospholipid carbon chain length and carbon chain saturation. Through a combined proteomics analysis, we found that neonatal exposure to sevoflurane significantly downregulated the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1), a key enzyme in the regulation of phospholipid metabolism, in the hippocampus of adolescent rats. Importantly, hippocampal LPCAT1 overexpression restored the dysregulated glycerophospholipid (GP) metabolism and alleviated the learning and memory deficits caused by sevoflurane. Collectively, our evidence that neonatal exposure to sevoflurane downregulates LPCAT1 expression and dysregulates GP metabolism in the hippocampus, which may contribute to the neurobehavioral dysfunction in the adolescent rats.


Subject(s)
Anesthetics, Inhalation , Animals , Rats , Sevoflurane/metabolism , Sevoflurane/pharmacology , Animals, Newborn , Anesthetics, Inhalation/pharmacology , Rats, Sprague-Dawley , Maze Learning , Memory Disorders/metabolism , Hippocampus/metabolism , Phospholipids/metabolism
9.
Front Public Health ; 10: 1032666, 2022.
Article in English | MEDLINE | ID: mdl-36466480

ABSTRACT

Background: Cognitive impairments are associated with increased risk for progression to dementia. In China, limited surveys have been conducted to estimate the national prevalence and risk factors associated with cognitive impairment in China. This study aims to assess the national prevalence and modifiable risk factors for cognitive impairments in the Chinese elderly population. Methods: This cross-sectional study was based on the 2018 China Health and Retirement Longitudinal Study. The Mini Mental State Examination (MMSE) is recommended to test for cognitive impairment. Univariate and multivariate logistic regression models were used in assessing risk factors for cognitive impairments in the Chinese elderly population. Results: A total of 3768 participants aged 60 years or older were enrolled in this study. The national prevalence of cognitive impairments was 22.24% in China, and the prevalence of cognitive impairment was higher in the south-west region than in the north region (29.94 vs. 16.53%, p < 0.05). The risk for cognitive impairments was higher in the following participants: not married or not living with spouse relative to married with spouse present (OR = 1.39, 95% CI, 1.15-1.70; p = 0.001), nap duration of ≥ 90 min relative to 30-60 min (OR = 1.54, 95% CI, 1.20-1.98; p = 0.001), sleep duration of ≥ 8 h relative to 6-8 h (OR = 1.73, 95% CI, 1.29-2.31; p < 0.001), and depression relative to no depression (OR = 1.67, 95% CI, 1.41-1.97; p < 0.001). The risk of cognitive impairment was lower in participants living in the urban areas relative to the rural areas (OR = 0.57, 95% CI, 0.47-0.69; p < 0.001) and consuming alcohol once a month relative to never consuming alcohol (OR = 0.69, 95% CI, 0.51-0.94; p = 0.02). Conclusion: Cognitive impairment prevalence was high in the Chinese elderly population. The potentially modifiable risk factors for cognitive impairment should be further assessed in the development of interventions for the elderly Chinese population.


Subject(s)
Cognitive Dysfunction , Aged , Humans , Cross-Sectional Studies , Prevalence , Longitudinal Studies , Cognitive Dysfunction/epidemiology , China/epidemiology
10.
Cell Rep ; 41(9): 111724, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36450263

ABSTRACT

Studies have shown the therapeutic effects of a ketogenic diet (KD) on epilepsy, but the effect of a KD on drug reinstatement is largely unclear. This study aims to investigate whether KD consumption possesses therapeutic potential for cocaine reinstatement and the molecular mechanism. We find that a KD significantly reduces cocaine-induced reinstatement in mice, which is accompanied by a markedly elevated level of ß-hydroxybutyrate (ß-OHB), the most abundant ketone body, in the hippocampus. The underlying mechanism is that ß-OHB posttranslationally modifies CaMKII-α with ß-hydroxybutyrylation, resulting in significant inhibition of T286 autophosphorylation and downregulation of CaMKII activity. Collectively, our results reveal that ß-hydroxybutyrylation is a posttranslational modification of CaMKII-α that plays a critical role in mediating the effect of KD consumption in reducing cocaine reinstatement.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cocaine , Animals , Mice , 3-Hydroxybutyric Acid/pharmacology , Cocaine/pharmacology , Conditioning, Classical , Hippocampus
11.
Front Surg ; 9: 924647, 2022.
Article in English | MEDLINE | ID: mdl-35813045

ABSTRACT

Background: Propofol and sevoflurane are the most used anesthetics for pediatric surgery. Emergence agitation, postoperative nausea and vomiting and postoperative pain are the primary adverse effect of these general anesthetics. Many clinical studies had compared the safety of propofol and sevoflurane in pediatric surgery, but the results were controversial. Objectives: To evaluate the evidence surrounding the safety of propofol versus sevoflurane for general anesthesia in children. Methods: Databases including PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang Data and Vip Data were searched to collect relevant articles. Trials were strictly selected according to previously defined inclusion and exclusion criteria. RevMan 5.3 software was used for meta-analyses. Results: Twenty randomized controlled trials recruiting 1,550 children for general anesthesia were included, with overall low-moderate methodological quality. There was evidence that compared with sevoflurane anesthesia, propofol anesthesia significantly decreased the incidence of emergence agitation (OR = 4.99, 95% CI, 3.67-6.80; P < 0.00001), postoperative nausea and vomiting (OR = 1.91, 95% CI, 1.27-2.87; P = 0.002) and postoperative pain (OR = 1.72, 95% CI, 1.11-2.64; P = 0.01) in children. However, patients who received sevoflurane tended to have shorter times to eye opening (MD = -2.58, 95% CI, -2.97- -2.19; P < 0.00001) and times to extubation (MD = -1.42, 95% CI, -1.81- -1.02; P < 0.00001). Conclusions: This review reveals that the children who received propofol anesthesia had the lower risks of emergence agitation, postoperative nausea and vomiting and postoperative pain when compared with sevoflurane anesthesia. But the children who received sevoflurane recovered slightly faster than those received propofol. Considering the limitations of the included studies, better methodological quality and large controlled trials are expected to further quantify the safety of propofol and sevoflurane for general anesthesia in children.

12.
Neuropharmacology ; 213: 109076, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35500677

ABSTRACT

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are key regulators during the process of synaptic plasticity in major depression disorder (MDD). Synapse differentiation-induced gene 1 (SynDIG1) functions as an atypical AMPAR auxiliary subunit and regulates synaptic AMPAR content; however, the role of SynDIG1 in MDD remains elusive. In this study, we found that the SynDIG1 expression was significantly increased in the neurons of the nucleus accumbens (NAc) of male mice after chronic social defeat stress (CSDS). CSDS enhanced SynDIG1-GluA2 binding and promoted the surface expression of AMPAR subunit GluA2 in the NAc. Knockdown of SynDIG1 decreased the surface expression of GluA2 and reversed the alteration of dendrite spines in the neurons, eventually alleviating the depressive-like behaviors of the stressed mice. Moreover, intra-NAc injection of IP12, a specific peptide to disrupt the interaction of SynDIG1 with GluA2, rescued depressive-like behaviors. Collectively, SynDIG1 regulates the surface expression of GluA2 and dendritic remodeling in the NAc of male mice under CSDS, thus mediating the depressive-like behaviors.


Subject(s)
Carrier Proteins/metabolism , Nucleus Accumbens , Receptors, AMPA , Animals , Depression/etiology , Male , Mice , Nucleus Accumbens/metabolism , Receptors, AMPA/metabolism , Social Defeat , Synapses/metabolism
13.
Food Funct ; 13(11): 6008-6021, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35603858

ABSTRACT

Ocean life contains a wealth of bioactive peptides that could be utilized in nutraceuticals and pharmaceuticals. This study aimed to obtain neuroprotective antioxidant peptides in sea squirt (Halocynthia roretzi) through protamex enzymolysis. Fraction F4 (ultrafiltration generated four fractions) had a lower molecular weight (<500 Dalton (Da)) with greater 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging activities (94.24 ± 2.50% and 91.80 ± 1.19%). After gel filtration, six peptides, including Phe-Gly-Phe (FGF), Leu-Gly-Phe (LGF), Leu-Phe-VAL (LFV), Val-Phe-Leu (VFL), Trp-Leu-Pro (WLP), and Ile-Ser-Trp (ISW), were identified and sequenced by liquid chromatography-mass spectrometry (LC-MS/MS). Peptides WLP and ISW showed higher oxygen radical absorbance capacity (ORAC) values (2.72 ± 0.47 and 1.93 ± 0.01 µmol L-1 of Trolox equivalent (TE) per µmol L-1 of peptide) than glutathione (GSH). Additionally, WLP effectively increased cell viability, dramatically attenuated 6-Hydroxydopamine (6-OHDA)-induced cell apoptosis and decreased reactive oxygen species (ROS) levels to nearly two-fold, and significantly boosted glutathione peroxidase (GSH-Px) activity in PC12 cells. Transcriptome sequencing revealed differential expression of genes associated with various oxidative stress pathways after WLP treatment, such as glutathione metabolism. These results suggest that the Halocynthia roretzi-derived tripeptide WLP could alleviate neurodegenerative diseases associated with oxidative stress.


Subject(s)
Neuroprotective Agents , Urochordata , Amino Acid Sequence , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, Liquid , Glutathione , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Peptides/chemistry , Peptides/pharmacology , Tandem Mass Spectrometry
14.
Acta Pharmacol Sin ; 43(2): 295-306, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34522005

ABSTRACT

Behavioral sensitization is a progressive increase in locomotor or stereotypic behaviours in response to drugs. It is believed to contribute to the reinforcing properties of drugs and to play an important role in relapse after cessation of drug abuse. However, the mechanism underlying this behaviour remains poorly understood. In this study, we showed that mTOR signaling was activated during the expression of behavioral sensitization to cocaine and that intraperitoneal or intra-nucleus accumbens (NAc) treatment with rapamycin, a specific mTOR inhibitor, attenuated cocaine-induced behavioural sensitization. Cocaine significantly modified brain lipid profiles in the NAc of cocaine-sensitized mice and markedly elevated the levels of phosphatidylinositol-4-monophosphates (PIPs), including PIP, PIP2, and PIP3. The behavioural effect of cocaine was attenuated by intra-NAc administration of LY294002, an AKT-specific inhibitor, suggesting that PIPs may contribute to mTOR activation in response to cocaine. An RNA-sequencing analysis of the downstream effectors of mTOR signalling revealed that cocaine significantly decreased the expression of SynDIG1, a known substrate of mTOR signalling, and decreased the surface expression of GluA2. In contrast, AAV-mediated SynDIG1 overexpression in NAc attenuated intracellular GluA2 internalization by promoting the SynDIG1-GluA2 interaction, thus maintaining GluA2 surface expression and repressing cocaine-induced behaviours. In conclusion, NAc SynDIG1 may play a negative regulatory role in cocaine-induced behavioural sensitization by regulating synaptic surface expression of GluA2.


Subject(s)
Carrier Proteins/metabolism , Cocaine/pharmacology , Nucleus Accumbens/drug effects , Receptors, AMPA/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Biotinylation , Blotting, Western , Central Nervous System Sensitization/drug effects , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Nucleus Accumbens/metabolism
15.
ACS Chem Neurosci ; 12(23): 4449-4464, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34762393

ABSTRACT

Cefepime exhibits a broad spectrum of antimicrobial activity and thus is a widely used treatment for severe bacterial infections. Adverse effects on the central nervous system (CNS) have been reported in patients treated with cefepime. Current explanation for the adverse neurobehavioral effect of cefepime is mainly attributed to its ability to cross the blood-brain barrier and competitively bind to the GABAergic receptor; however, the underlying mechanism is largely unknown. In this study, mice were intraperitoneally administered 80 mg/kg cefepime for different periods, followed by neurobehavioral tests and a brain lipidomic analysis. LC/MS-MS-based metabolomics was used to investigate the effect of cefepime on the brain lipidomic profile and metabolic pathways. Repeated cefepime treatment time-dependently caused anxiety-like behaviors, which were accompanied by reduced locomotor activity in the open field test. Cefepime profoundly altered the lipid profile, acyl chain length, and unsaturation of fatty acids in the corpus striatum, and glycerophospholipids accounted for a large proportion of those significantly modified lipids. In addition, cefepime treatment caused obvious alteration in the lipid-enriched membrane structure, neurites, mitochondria, and synaptic vesicles of primary cultured striatal neurons; moreover, the spontaneous electrical activity of striatal neurons was significantly reduced. Collectively, cefepime reprograms glycerophospholipid metabolism in the corpus striatum, which may interfere with neuronal structure and activity, eventually leading to aberrant neurobehaviors in mice.


Subject(s)
Lipid Metabolism , Lipidomics , Animals , Cefepime , Corpus Striatum , Glycerophospholipids , Humans , Mice
16.
Neurosci Bull ; 37(12): 1683-1702, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34491535

ABSTRACT

Drug-associated reward memories are conducive to intense craving and often trigger relapse. Simvastatin has been shown to regulate lipids that are involved in memory formation but its influence on other cognitive processes is elusive. Here, we used a mass spectrometry-based lipidomic method to evaluate the impact of simvastatin on the mouse brain in a cocaine-induced reinstatement paradigm. We found that simvastatin blocked the reinstatement of cocaine-induced conditioned place preference (CPP) without affecting CPP acquisition. Specifically, only simvastatin administered during extinction prevented cocaine-primed reinstatement. Global lipidome analysis showed that the nucleus accumbens was the region with the greatest degree of change caused by simvastatin. The metabolism of fatty-acids, phospholipids, and triacylglycerol was profoundly affected. Simvastatin reversed most of the effects on phospholipids induced by cocaine. The correlation matrix showed that cocaine and simvastatin significantly reshaped the lipid metabolic pathways in specific brain regions. Furthermore, simvastatin almost reversed all changes in the fatty acyl profile and unsaturation caused by cocaine. In summary, pre-extinction treatment with simvastatin facilitates cocaine extinction and prevents cocaine relapse with brain lipidome remodeling.


Subject(s)
Cocaine , Animals , Brain , Conditioning, Operant , Extinction, Psychological , Lipidomics , Male , Mice , Simvastatin/pharmacology , Simvastatin/therapeutic use
17.
Sci Total Environ ; 797: 149043, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34303983

ABSTRACT

Cadmium (Cd) is an environmental heavy metal toxicant with central nervous system toxicity and has a greater negative impact on fetal neurodevelopment. However, the causative mechanisms for the neurodevelopmental toxicity of Cd have remained unclear. The human cerebral organoids can better mimic the three-dimensional structure of the early fetal nerve tissue, which can be used to study the developmental neurotoxicity under the condition of maternal exposure to Cd. Our study identified that Cd exposure specifically induced apoptosis in neurons and inhibited the proliferation of neural progenitor cells, but neural differentiation was not significantly affected in cerebral organoids. Cd exposure also elicited overexpression of GFAP, a marker of astrocytes and resulted in IL-6 release. This study revealed that mineral absorption was significantly disturbed with metallothioneins expression up-regulation. Moreover, we found Cd exposure inhibited cilium-related gene expression and reduced ciliary length with increasing dose. In conclusion, our study has shown that Cd exposure regulated neural cell proliferation and death, induced neuroinflammation, enhanced metal ion absorption, and impaired ciliogenesis, which hinder the normal development of the fetal brain.


Subject(s)
Human Embryonic Stem Cells , Organoids , Astrocytes , Cadmium/toxicity , Female , Humans , Neurons
18.
Exp Ther Med ; 22(2): 847, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34149893

ABSTRACT

Sertoli cells (SCs) are an important component of spermatogenic tubules. The blood-testis barrier (BTB) is composed of SCs and is necessary for the development and maturity of spermatogenic cells. When the tight connection between SCs is destroyed, the BTB loses its integrity, leading to impaired spermatogenesis. Polypyrimidine tract-binding protein 1 (PTBP1) is a key protein involved in precursor mRNA splicing and selective splicing events, which directly affects tumor cell proliferation and influences the formation of the blood-tumor barrier by regulating the expression levels of tight junction-associated proteins. The present study revealed that the expression of PTBP1 was downregulated following a decrease in spermatogenic activity at the phase of senescence. TM4 cells were transfected with lentivirus-short hairpinRNA-PTBP1 to evaluate the effect of silencing PTBP1 on the expression levels of tight junction proteins and the integrity of tight junctions between adjacent SCs. Western blot analysis indicated that the expression levels of Zonula occludens 1, occludin and claudin-5 decreased significantly due to silencing of PTBP1 in SCs. Through detecting trans-epithelial electrical resistance, it was revealed that silencing of PTBP1 broke the integrity of tight junctions between adjacent SCs. The results suggested that PTBP1 maintained the integrity of the BTB by promoting the expression levels of tight junction-associated proteins and revealed the possible mechanism of PTBP1 in regulating spermatogenesis.

19.
Bioengineered ; 12(1): 1351-1359, 2021 12.
Article in English | MEDLINE | ID: mdl-33904385

ABSTRACT

RNA interference (RNAi) was used to investigate the role of epididymal vascular endothelial growth factor (VEGF) gene expression on sperm hyaluronidase (HYD) in a rat model of arsenic poisoning and to identify a new gene therapy target for male infertility caused by arsenic poisoning. The Rat model of chronic arsenic poisoning was established. And we found that positive expression of VEGF and VEGF receptor 2 (VEGFR2) was observed by Immunohistochemical staining in the epididymal tissues of arsenic-exposed rats. Subsequently, VEGF-shRNA-1, VEGF-shRNA-2 and VEGF shRNA-3 expression vectors containing epididymal VEGF-shRNA lentivirus were constructed and injected into the bilateral epididymis of each group of rats (Control group, NC-shRNA negative infection group, VEGF-shRNA-1 group, VEGF-shRNA-2 group, VEGF-shRNA-3 group) (n = 10 per group). Compared with the negative infection group and the normal control group, the expression of VEGF and VEGFR2 mRNA and protein levels were significantly decreased following epididymal infection. In addition, the HYD activity was all significantly lower than that in the normal control group and the negative infection group. Taken together, epididymal VEGF gene silencing may inhibit the activity of sperm HYD through downregulating VEGFR2.


Subject(s)
Arsenic Poisoning/enzymology , Arsenic Poisoning/genetics , Down-Regulation , Epididymis/metabolism , Gene Silencing , Hyaluronoglucosaminidase/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Animals , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
20.
Cancer Cell Int ; 21(1): 145, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33653339

ABSTRACT

BACKGROUND: Emerging evidence continues to highlight the significant role of microRNAs (miRNAs) in the regulation of cancer growth and metastasis. Herein, the current study aimed to elucidate the role of exosomal miR-183 in prostate cancer development. METHODS: Initially, public microarray-based gene expression profiling of prostate cancer was employed to identify differentially expressed miRNAs. The putative target gene TPM1 of miR-183 was subsequently predicted, followed by the application of a luciferase reporter assay and examination of the expression patterns in prostate cancer patients and cell lines. The effects of miR-183 and TPM1 on processes such as cell proliferation, invasion and migration were evaluated using in vitro gain- and loss-of-function experiments. The effect of PC3 cells-derived exosomal miR-183 was validated in LNCaP cells. In vivo experiments were also performed to examine the effect of miR-183 on prostate tumor growth. RESULTS: High expression of miR-183 accompanied with low expression of TPM1 was detected in prostate cancer. Our data indicated that miR-183 could target and downregulate TPM1, with the overexpression of miR-183 and exosomal miR-183 found to promote cell proliferation, migration, and invasion in prostate cancer. Furthermore, the tumor-promoting effect of exosome-mediated delivery of miR-183 was subsequently confirmed in a tumor xenograft model. CONCLUSIONS: Taken together, the key findings of our study demonstrate that prostate cancer cell-derived exosomal miR-183 enhance prostate cancer cell proliferation, invasion and migration via the downregulation of TPM1, highlighting a promising therapeutic target against prostate cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...