Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 35: 517-533, 2024 May.
Article in English | MEDLINE | ID: mdl-38404643

ABSTRACT

Polymyxins are the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. However, this last resort has been threatened by the emergence of superbugs carrying the mobile colistin resistance gene-1 (mcr-1). Given the high concentration of matrix metalloproteinase 3 (MMP-3) in bacterial pneumonia, limited plasma accumulation of colistin (CST) in the lung, and potential toxicity of ionic silver (Ag+), we designed a feasible clinical transformation platform, an MMP-3 high-performance lung-targeted bio-responsive delivery system, which we named "CST&Ag@CNMS". This system exhibited excellent lung-targeting ability (>80% in lungs), MMP-3 bio-responsive release property (95% release on demand), and synergistic bactericidal activity in vitro (2-4-fold minimum inhibitory concentration reduction). In the mcr-1+ CST-resistant murine pneumonia model, treatment with CST&Ag@CNMS improved survival rates (70% vs. 20%), reduced bacteria burden (2-3 log colony-forming unit [CFU]/g tissue), and considerably mitigated inflammatory response. In this study, CST&Ag@CNMS performed better than the combination of free CST and AgNO3. We also demonstrated the superior biosafety and biodegradability of CST&Ag@CNMS both in vitro and in vivo. These findings indicate the clinical translational potential of CST&Ag@CNMS for the treatment of lung infections caused by CST-resistant bacteria carrying mcr-1.

2.
Antimicrob Resist Infect Control ; 12(1): 118, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898771

ABSTRACT

BACKGROUND: With the widespread spread of carbapenem-resistant gram-negative bacteria (CR-GNB) in medical facilities, the carriage of CR-GNB among critically ill patients has become a significant concern in intensive care units (ICU). This study aimed to develop a scoring system to identify CR-GNB carriers upon ICU admission. METHODS: Consecutive critically ill patients admitted to the ICU of Shanghai Ruijin Hospital between January 2017 and December 2020 were included. The patients were then divided into training and testing datasets at a 7:3 ratio. Parameters associated with CR-GNB carriage were identified using least absolute shrinkage and selection operator regression analysis. Each parameter was assigned a numerical score ranging from 0 to 100 using logistic regression analysis. Subsequently, a four-tier risk-level system was developed based on the cumulative scores, and assessed using the area under the receiver operating characteristic curve (AUC). RESULTS: Of the 1736 patients included in this study, the prevalence of CR-GNB carriage was 10.60%. The clinical scoring system including seven variables (neurological disease, high-risk department history, length of stay ≥ 14 days, ICU history, invasive mechanical ventilation, gastrointestinal tube placement, and carbapenem usage) exhibited promising predictive capabilities. Patients were then stratified using the scoring system, resulting in CR-GNB carriage rates of 2.4%, 12.0%, 36.1%, and 57.9% at the respective risk levels (P < 0.001). Furthermore, the AUC of the developed model in the training set was calculated to be 0.82 (95% CI, 0.78-0.86), while internal validation yielded an AUC of 0.83 (95% CI, 0.77-0.89). CONCLUSIONS: The ICU-CARB Score serves as a straightforward and precise tool that enables prompt evaluation of the risk of CR-GNB carriage at the time of ICU admission, thereby facilitating the timely implementation of targeted pre-emptive isolation.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Humans , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Critical Illness , China/epidemiology , Gram-Negative Bacteria , Intensive Care Units
3.
Phys Rev Lett ; 130(3): 030801, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36763392

ABSTRACT

In the past two decades, quantum key distribution networks based on telecom fibers have been implemented on metropolitan and intercity scales. One of the bottlenecks lies in the exponential decay of the key rate with respect to the transmission distance. Recently proposed schemes mainly focus on achieving longer distances by creating a long-arm single-photon interferometer over two communication parties. Despite their advantageous performance over long communication distances, the requirement of phase locking between two remote lasers is technically challenging. By adopting the recently proposed mode-pairing idea, we realize high-performance quantum key distribution without global phase locking. Using two independent off-the-shelf lasers, we show a quadratic key-rate improvement over the conventional measurement-device-independent schemes in the regime of metropolitan and intercity distances. For longer distances, we also boost the key rate performance by 3 orders of magnitude via 304 km commercial fiber and 407 km ultralow-loss fiber. We expect this ready-to-implement high-performance scheme to be widely used in future intercity quantum communication networks.

4.
Infect Drug Resist ; 15: 2371-2381, 2022.
Article in English | MEDLINE | ID: mdl-35528184

ABSTRACT

Background: Since the outbreak of coronavirus disease (COVID-19) in December 2019 in Wuhan, it has spread rapidly worldwide. We aimed to establish and validate a nomogram that predicts the probability of coronavirus-associated acute respiratory distress syndrome (CARDS). Methods: In this single-centre, retrospective study, 261 patients with COVID-19 were recruited using positive reverse transcription-polymerase chain reaction tests for severe acute respiratory syndrome coronavirus 2 in Tongji Hospital at Huazhong University of Science and Technology (Wuhan, China). These patients were randomly distributed into the training cohort (75%) and the validation cohort (25%). The factors included in the nomogram were determined using univariate and multivariate logistic regression analyses based on the training cohort. The area under the receiver operating characteristic curve (AUC), consistency index (C-index), calibration curve, and decision curve analysis (DCA) were used to evaluate the efficiency of the nomogram in the training and validation cohorts. Results: Independent predictive factors, including fasting plasma glucose, platelet, D-dimer, and cTnI, were determined using the nomogram. In the training cohort, the AUC and concordance index were 0.93. Similarly, in the validation cohort, the nomogram still showed great distinction (AUC: 0.92) and better calibration. The calibration plot also showed a high degree of agreement between the predicted and actual probabilities of CARDS. In addition, the DCA proved that the nomogram was clinically beneficial. Conclusion: Based on the results of laboratory tests, we established a predictive model for acute respiratory distress syndrome in patients with COVID-19. This model shows good performance and can be used clinically to identify CARDS early. Trial Registration: Ethics committee of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (No.:(2020) Linlun-34th).

5.
Phys Rev Lett ; 126(25): 250502, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34241519

ABSTRACT

Quantum key distribution endows people with information-theoretical security in communications. Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because of its outstanding key rates over long distances. Recently, several demonstrations of TF-QKD have been realized. Nevertheless, those experiments are implemented in the laboratory, and therefore a critical question remains about whether the TF-QKD is feasible in real-world circumstances. Here, by adopting the sending-or-not-sending twin-field QKD (SNS-TF-QKD) with the method of actively odd parity pairing (AOPP), we demonstrate a field-test QKD over 428 km of deployed commercial fiber and two users are physically separated by about 300 km in a straight line. To this end, we explicitly measure the relevant properties of the deployed fiber and develop a carefully designed system with high stability. The secure key rate we achieved breaks the absolute key rate limit of repeaterless QKD. The result provides a new distance record for the field test of both TF-QKD and all types of fiber-based QKD systems. Our work bridges the gap of QKD between laboratory demonstrations and practical applications and paves the way for an intercity QKD network with measurement-device-independent security.

6.
Front Med (Lausanne) ; 8: 692813, 2021.
Article in English | MEDLINE | ID: mdl-34307419

ABSTRACT

Objective: To verify the effects of comprehensive infection prevention and control (IPC) interventions for the prevention of the cross-transmission of carbapenem-resistant Klebsiella pneumoniae (CRKP) within intensive care units (ICUs) in an epidemic region. Methods: A historical control, quasi-experimental design was performed. The study was conducted between January 2017 and December 2019, following the implementation of a multimodal IPC bundle. The baseline period was established from January 2013 to June 2013, when only basic IPC measures were applied. Results: A total of 748 patients were enrolled during the entire study. The incidence of ICU-acquired CRKP colonization/infection was 1.16 per 1,000 patient-days during the intervention period, compared with 10.19 per 1,000 patient-days during the baseline period (p = 0.002). The slope of the monthly incidence of CRKP at admission showed an increasing trend (p = 0.03). The incidence of ICU-acquired catheter-related bloodstream infections caused by CRKP decreased from 2.54 to 0.96 per 1,000 central-line-days (p = 0.08). Compliance with contact precautions and terminal room disinfection improved during the intervention period. All environmental surface culture samples acquired after terminal room disinfection were negative for CRKP. Conclusion: Our findings suggest that in epidemic settings, multimodal IPC intervention strategies and consistent monitoring of compliance, may limit the spread of CRKP in ICUs.

7.
Rev Sci Instrum ; 87(9): 093115, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27782601

ABSTRACT

Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

SELECTION OF CITATIONS
SEARCH DETAIL
...