Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11688, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778150

ABSTRACT

Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.


Subject(s)
Data Mining , Prostatic Neoplasms , Signal Transduction , Transcription Factors , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , ras Proteins/genetics , ras Proteins/metabolism , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Gene Regulatory Networks , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Cell Lineage/genetics
2.
J Transl Med ; 19(1): 206, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33985534

ABSTRACT

BACKGROUND: Tumor metastasis is the main cause of death of cancer patients, and cancer stem cells (CSCs) is the basis of tumor metastasis. However, systematic analysis of the stemness of prostate cancer cells is still not abundant. In this study, we explore the effective factors related to the stemness of prostate cancer cells by comprehensively mining the multi-omics data from TCGA database. METHODS: Based on the prostate cancer transcriptome data in TCGA, gene expression modules that strongly relate to the stemness of prostate cancer cells are obtained with WGCNA and stemness scores. Copy number variation of stemness genes of prostate cancer is calculated and the difference of transcription factors between prostate cancer and normal tissues is evaluated by using CNV (copy number variation) data and ATAC-seq data. The protein interaction network of stemness genes in prostate cancer is constructed using the STRING database. Meanwhile, the correlation between stemness genes of prostate cancer and immune cells is analyzed. RESULTS: Prostate cancer with higher Gleason grade possesses higher cell stemness. The gene set highly related to prostate cancer stemness has higher CNV in prostate cancer samples than that in normal samples. Although the transcription factors of stemness genes have similar expressions, they have different contributions between normal and prostate cancer tissues; and particular transcription factors enhance the stemness of prostate cancer, such as PUM1, CLOCK, SP1, TCF12, and so on. In addition, the lower tumor immune microenvironment is conducive to the stemness of prostate cancer. CD8 + T cells and M1 macrophages may play more important role in the stemness of prostate cancer than other immune cells in the tumor microenvironment. Finally, EZH2 is found to play a central role in stemness genes and is negatively correlated with resting mast cells and positively correlated with activated memory CD4 + T cells. CONCLUSIONS: Based on the systematic and combined analysis of multi-omics data, we find that high copy number variation, specific transcription factors, and low immune microenvironment jointly contribute to the stemness of prostate cancer cells. These findings may provide us new clues and directions for the future research on stemness of prostate cancer.


Subject(s)
DNA Copy Number Variations , Prostatic Neoplasms , DNA Copy Number Variations/genetics , Gene Expression Profiling , Gene Regulatory Networks , Humans , Male , Prostatic Neoplasms/genetics , RNA-Binding Proteins , Transcription Factors/genetics , Tumor Microenvironment/genetics
3.
J Cell Physiol ; 234(10): 17444-17458, 2019 08.
Article in English | MEDLINE | ID: mdl-30820960

ABSTRACT

Alpha-2-glycoprotein 1, zinc-binding (AZGP1), known as zinc-alpha-2-glycoprotein (ZAG), is a multifunctional secretory glycoprotein and relevant to cancer metastasis. Little is known regarding the underlying mechanisms of AZGP1 in prostate cancer (PCa). In the present study, we report that AZGP1 is an androgen-responsive gene, which is involved in AR-induced PCa cell proliferation and metastasis. In clinical specimens, the expression of AZGP1 in PCa tissues is markedly higher than that in adjacent normal tissues. In cultures, expression of AZGP1 is upregulated by the androgen-AR axis at both messenger RNA and protein levels. Furthermore, Chip-Seq assay identifies canonical androgen-responsive elements (AREs) at AZGP1 enhancer; and dual-luciferase reporter assays reveal that the AREs is highly responsive to androgen whereas mutations of the AREs abolish the reporter activity. In addition, AZGP1 promotes G1/S phase transition and cell cycle progress by increasing cyclin D1 levels in PCa cells. Functional studies demonstrate that knocking down endogenous AZGP1 expression in LNCaP and CWR22Rv1 cells largely weaken androgen/AR axis-induced cell migration and invasion. In vivo xenotransplantation tumor experiments also show that AZGP1 involves in androgen/AR axis-mediated PCa cell proliferation. Taken together, our study implicates for the first time that AZGP1 is an AR target gene and is involved in androgen/AR axis-mediated cell proliferation and metastasis in primary PCa.


Subject(s)
Carrier Proteins/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Glycoproteins/metabolism , Prostatic Neoplasms/metabolism , Adipokines , Cell Division/physiology , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Prostatic Hyperplasia/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Transcriptional Activation
4.
Fish Shellfish Immunol ; 64: 68-77, 2017 May.
Article in English | MEDLINE | ID: mdl-28279792

ABSTRACT

Grass carp (Ctenopharyngodon idella) was one of the economically important freshwater fish in China. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in a tremendous loss in the process of grass carp cultivation. Transcriptome analysis could provide a comprehensive understanding of the molecular mechanisms involved in specific biological processes and diseases for the resistance to reovirus infection of grass carp. In this study, the raw data from NCBI (accession number: SRA099702) were analyzed, in which, 50 significant differentially expressed genes by routine transcriptome analysis and 84 notably differentially expressed genes by co-expression network method. KEGG analysis revealed that the pathway in hemorrhagic diseases in grass carp was similar to the influenza A induced pathway. The interferon-stimulated gene ISG15 and sacsin-like gene, which were up-regulated in data (SRA099702), were also up-regulated in data (SRP049081) from a similar assay. QPCR experiment was performed to validate these up-regulated genes. The ISG15 gene was shown to be the core gene in the co-expression network. The results would enhance our understanding of the antivirus system of grass carp infected by reovirus.


Subject(s)
Carps , Fish Diseases/genetics , Reoviridae Infections/veterinary , Reoviridae/physiology , Transcriptome , Animals , Carps/classification , Carps/genetics , Carps/immunology , Fish Diseases/virology , Gene Expression Profiling/veterinary , Phylogeny , Reoviridae Infections/genetics , Reoviridae Infections/virology
5.
Fish Shellfish Immunol ; 60: 13-20, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27815207

ABSTRACT

Members of the Janus kinase (JAK) family, JAK1 and TYK2 take part in JAK-STAT signaling pathway mediated by interferon in mammalian cells. Similar to the mammalian counterparts, fish JAK1 and TYK2 also perform their potential biological activities by phosphorylating cytokine receptors and STAT. In the present study, Ctenopharyngodon idellus JAK1 (CiJAK1) and TYK2 (CiTYK2) were cloned and identified. The full-length cDNA of CiJAK1 (KT724352.1) is 3829 bp, with an Open Reading Frame (ORF) of 3465 bp encoding a putative protein of 1154 amino acids. The full-length cDNA of CiTYK2 (KT724353.1) is 4337 bp, including an ORF of 3168 bp encoding 1055 amino acids. Structurally, both of them have B41, SH2, TyrKc and TyrKc common domains. CiJAK1 and CiTYK2 share a high degree of homology with their respective counterparts from Danio rerio and Cyprinus carpio by phylogenetic tree analysis. Polyinosinic-polycytidylic acid (Poly I:C), a synthetic dsRNA analogue, can launch the JAK-STAT antiviral signaling pathway. To elucidate the molecular mechanism of Poly I:C initiating the antiviral signaling pathway in fish, C. idellus kidney (CIK) cells were stimulated with Poly I:C and then the cell lysates were separated on 10% SDS-PAGE. The results showed that not only Poly I:C drastically increased the expression level of CiJAK1 and CiTYK2, but also it induced the phosphorylation of CiJAK1 and CiTYK2, as well as C. idellus type I IFN receptor subunits, CiCRFB1 and CiCRFB5. In detail, the levels of p-CiJAK1 and p-CiTYK2 were evidently up-regulated at 3 h post stimulation; however the phosphorylation levels of CiCRFB1 and CiCRFB5 displayed a sharp up-regulation at 12 h post stimulation of Poly I:C. As a basic mechnism of feedback regulation of JAK-STAT signaling pathway, overexpression of CiCRFB1 and CiCRFB5 in CIK cells facilitated the phosphorylation of CiJAK1 and CiTYK2.


Subject(s)
Carps/genetics , Carps/immunology , Fish Proteins/genetics , Interferon Type I/genetics , Janus Kinases/genetics , Poly I-C/pharmacology , Adjuvants, Immunologic/pharmacology , Animals , Carps/metabolism , Cloning, Molecular , Fish Proteins/metabolism , Interferon Type I/metabolism , Janus Kinases/metabolism , Phosphorylation/drug effects , Receptors, Interferon/metabolism , Sequence Analysis, DNA/veterinary , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...