Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Technol Cancer Res Treat ; 23: 15330338241258566, 2024.
Article in English | MEDLINE | ID: mdl-38803305

ABSTRACT

Purpose: Determining the impact of air gap errors on the skin dose in postoperative breast cancer radiotherapy under dynamic intensity-modulated radiation therapy (IMRT) techniques. Methods: This was a retrospective study that involved 55 patients who underwent postoperative radiotherapy following modified radical mastectomy. All plans employed tangential IMRT, with a prescription dose of 50 Gy, and bolus added solely to the chest wall. Simulated air gap depth errors of 2 mm, 3 mm, and 5 mm were introduced at depression or inframammary fold areas on the skin, resulting in the creation of air gaps named Air2, Air3, and Air5. Utilizing a multivariable GEE, the average dose (Dmean) of the local skin was determined to evaluate its relationship with air gap volume and the lateral beam's average angle (AALB). Additionally, an analysis was conducted on the impact of gaps on local skin. Results: When simulating an air gap depth error of 2 mm, the average Dmean in plan2 increased by 0.46 Gy compared to the initial plan (planO) (p < .001). For the 3-mm air gap, the average Dmean of plan3 was 0.51 Gy higher than that of planO (p < .001). When simulating the air gap as 5 mm, the average Dmean of plan5 significantly increased by 0.59 Gy compared to planO (p < .001). The TCP results showed a similar trend to those of Dmean. As the depth of air gap error increases, NTCP values also gradually rise. The linear regression of the multivariable GEE equation indicates that the volume of air gaps and the AALB are strong predictors of Dmean. Conclusion: With small irregular air gap errors simulated in 55 patients, the values of skin's Dmean, TCP, and NTCP increased. A multivariable linear GEE regression model may effectively explain the impact of air gap volume and AALB on the local skin.


Subject(s)
Breast Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Skin , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Skin/radiation effects , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Middle Aged
2.
Front Oncol ; 13: 1144784, 2023.
Article in English | MEDLINE | ID: mdl-37188200

ABSTRACT

Objectives: Single-isocentre volumetric-modulated arc therapy (VMAT) stereotactic body radiation therapy (SBRT) improves treatment efficiency and patient compliance for patients with multiple liver metastases (MLM). However, the potential increase in dose spillage to normal liver tissue using a single-isocentre technique has not yet been studied. We comprehensively evaluated the quality of single- and multi-isocentre VMAT-SBRT for MLM and propose a RapidPlan-based automatic planning (AP) approach for MLM SBRT. Methods: A total of 30 patients with MLM (two or three lesions) were selected for this retrospective study. We manually replanned all patients treated with MLM SBRT by using the single-isocentre (MUS) and multi-isocentre (MUM) techniques. Then, we randomly selected 20 MUS and MUM plans for training to generate the single-isocentre RapidPlan model (RPS) and the multi-isocentre RapidPlan model (RPM). Finally, we used data from the remaining 10 patients to validate RPS and RPM. Results: Compared with MUS, MUM reduced the mean dose delivered to the right kidney by 0.3 Gy. The mean liver dose (MLD) was 2.3 Gy higher for MUS compared with MUM. However, the monitor units, delivery time, and V20Gy of normal liver (liver-gross tumour volume) for MUM were significantly higher than for MUS. Based on validation, RPS and RPM slightly improved the MLD, V20Gy, normal tissue complications, and dose sparing to the right and left kidneys and spinal cord compared with manual plans (MUS vs RPS and MUM vs RPM), but RPS and RPM significantly increased monitor units and delivery time. Conclusions: The single-isocentre VMAT-SBRT approach could be used for MLM to reduce treatment time and patient comfort at the cost of a small increase in the MLD. Compared with the manual plans, RapidPlan-based plans, especially RPS, have slightly improved quality.

3.
Langmuir ; 38(48): 14550-14562, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36399765

ABSTRACT

Herein, a highly sensitive volatile organic compound (VOC) gas sensor is demonstrated using immobilized ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate, onto surfaces functionalized by the quaternary ammonium group -N+R, -COOH, and -NH2, i.e., N+-IL, COOH-IL, and NH2-IL, respectively. These functional groups ensure highly tunable interactions between the IL and surfaces, efficiently modulating the electrical resistance of the immobilized IL upon exposure to acetone and toluene. The immobilized IL to both acetone and toluene displays significant electronic resistance changes at a concentration of 150 ppm, falling in the order NH2-IL > N+-IL > COOH-IL for acetone while COOH-IL > NH2-IL > N+-IL for toluene. A better gaseous sensing ability is achieved in COOH-IL for toluene than acetone, while this does not hold in the case of NH2-IL and N+-IL surfaces because of the completely different ion structuring of the IL at these functionalized surfaces. The accelerated ion mobility in the IL that is immobilized onto functionalized surfaces is also responsible for the strong gaseous sensing response, which is demonstrated further by the atomic force microscopy-measured smaller friction coefficient. This is highly encouraging and suggests that ILs can be immobilized by a network formed by surface functionalization to easily and cheaply detect VOCs at ppm concentrations.


Subject(s)
Ionic Liquids , Volatile Organic Compounds , Acetone , Toluene , Gases
4.
Phys Chem Chem Phys ; 24(41): 25411-25419, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36250344

ABSTRACT

Atomic force microscopy (AFM) with a gold colloid probe modeled as the electrode surface is employed to directly capture the contact resonance frequency of two phosphonium-based ionic liquids (ILs) containing a common anion [BScB]- and differently lengthened cations ([P6,6,6,14]+ and [P4,4,4,8]+). The comparative interfacial studies are performed by creating IL films on the surface of gold, followed by measuring the wettability, thickness of the films, adhesion forces, surface morphology and AFM-probed contact resonance frequency. In addition, the cyclic voltammetry and impedance spectroscopy measurements of the neat ILs are measured on the surface of the gold electrode. The IL with longer cation alkyl chains exhibits a well-defined thin film on the electrode surface and enhanced the capacitance than the shorter chain IL. The AFM contact resonance frequency and force curves reveal that the longer IL prefers to form stiffer ion layers at the gold electrode surface, suggesting the "…anion-anion-cation-cation…" bilayer structure, in contrast, the shorter-chain IL forms the softer cation-anion alternating structure, i.e., "…anion-cation-anion-cation…".

5.
Sci Total Environ ; 852: 158194, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35995167

ABSTRACT

The fungicide folpet is rapidly degraded into phthalimide (PI) during both thermal processing and analytical procedures in sample preparation; thus, its residue definition has been modified into the sum of itself and PI. Tea is one of the world's most popular nonalcoholic beverages, where folpet is not listed as an applicable pesticide. To demonstrate how serious false-positives and overestimation in dietary risk are caused by the application of a new residue definition, the residue pattern of PI in made tea and processed tea leaves, along with its transfer rate during tea brewing and corresponding dietary risk, were investigated in the present study. The results revealed that PI residue in tea ranged from <10 µg/kg to 180 µg/kg with a median value of 10 µg/kg, 7.3 % of which was over the maximum residue limit established by EU (100 µg/kg, expressed as folpet). The PI residue in green tea was obviously higher than that in black, dark and oolong tea. Simulated heating experiments revealed that PI can arise from improper heating of folpet-free fresh tea leaves, and thus green tea bears a higher risk for its manufacturing employing a comparatively higher temperature. The transfer rate of PI during tea brewing was 104 ± 14 %. Nevertheless, the risk of PI through drinking tea was negligible to humans depending on the risk quotient (RQ) value, which was significantly lower than 1.


Subject(s)
Camellia sinensis , Fungicides, Industrial , Humans , Tea/chemistry , Phthalimides/analysis , Camellia sinensis/chemistry
6.
Langmuir ; 38(23): 7300-7311, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35635722

ABSTRACT

With the increasing importance of nanoconfined water in various heterostructures, it is quite essential to clarify the influence of nanoconfinement on the unique properties of water molecules in the pivotal heterojunction. In this work, we reported a series of classical molecular dynamics (MD) simulations to explore nanoconfined water in the subnanometer-sized and nanometer-sized heterostructures by adjusting one-dimensional (1-D) carbon nanotubes with different diameters and two-dimensional (2-D) graphene sheets with different interlayer distances. Our simulation results demonstrated that water molecules in the 1-D/2-D heterojunction show an obvious structural rearrangement associated with the remarkable breaking and formation of hydrogen bonds (HBs), and such rearrangements in the subnanometer-sized systems are much more pronounced than those in the nanometer-sized ones. When water molecules in the 1-D/2-D heterojunctions migrate from 2-D to 1-D confinements, the ordered multi-layer structure in the 2-D confinement are completely destroyed and then transform into different circular HB networks near the nanotube orifice for better connecting to the single-file or helical HB network in the 1-D nanotubes. Furthermore, water molecules in the 1-D/2-D heterojunctions can form stronger HBs with those water molecules further away from the 1-D confinement, leading to an asymmetrical orientational distribution near the orifice. More importantly, our comparison results revealed that the 1-D confinement plays a more important role than the 2-D confinement in determining both the structures and dynamics of water molecules in the 1-D/2-D heterojunction.

7.
Phys Chem Chem Phys ; 24(21): 12808-12815, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35593233

ABSTRACT

Ionic liquids (ILs) interact strongly with many different types of solid surfaces in a wide range of applications, e.g. lubrication, energy storage and conversion, etc. However, due to the nearly immeasurable large number of potential ILs available, identifying the appropriate ILs for specific solid interfaces with desirable properties is a challenge. Theoretical studies are highly useful for effective development of design and applications of these complex molecular systems. However, obtaining reliable force field models and interaction parameters is highly demanding. In this work, we apply a new methodology by deriving the interaction parameters directly from the experimental data, determined by colloid probe atomic force microscopy (CP-AFM). The reliability of the derived interaction parameters is tested by performing molecular dynamics simulations to calculate translational self-diffusion coefficients and comparing them with those obtained from NMR diffusometry.

8.
Langmuir ; 38(14): 4175-4187, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35349284

ABSTRACT

Here, we perform a series of classical molecular dynamics simulations for two different [HEMIM][DCA] and [BMIM][BF4] ionic liquids (ILs) on the ZIF-8 surface to explore the interfacial properties of metal-organic framework (MOFs)/IL composite materials at the molecular level. Our simulation results reveal that the interfacial structures of anions and cations on the ZIF-8 surface are dominated by the surface roughness due to the steric hindrance, which is extremely different from the driving mechanism based on solid-ion interactions of ILs on flat solid surfaces. At the ZIF-8/IL interfaces, the open sodalite (SOD) cages of the ZIF-8 surface can block most of the large-size cations outside and significantly boost the segregation behavior of anions and cations. In comparison with the [BMIM][BF4] IL, the [HEMIM][DCA] IL has much more anions entering into the open SOD cages owing to the combination of stronger ZIF-8-[DCA]- interactions and more ordered arrangement of [DCA]- anions on the ZIF-8 surface. Furthermore, more and stronger ZIF-8-[BF4]- hydrogen bonds (HBs) are found to exist on the cage edges than the ZIF-8-[DCA]- HBs, further preventing [BF4]- anions from entering into SOD cages. By more detailed analyses, we find that the hydrophobic interaction has an important influence on the interfacial structures of the side chains of [HEMIM]+ and [BMIM]+ cations, while the π-π stacking interaction plays a key role in determining the interfacial structures of the imidazolium rings of both cations. Our simulation results in this work provide a molecular-level understanding of the underlying driving mechanism on segregation behavior at the ZIF-8/IL interfaces.

9.
J Chem Inf Model ; 60(4): 2208-2218, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32208717

ABSTRACT

Here we report a series of nonequilibrium dynamic Monte Carlo simulations combined with dual control volume (DCV-DMC) to explore the separation selectivity of CH4/CO2 gas mixtures in the ZIF-8 membrane with a thickness of up to about 20 nm. Meanwhile, an improved DCV-DMC approach coupled with the corresponding potential map (PM-DCV-DMC) is further developed to speed up the computational efficiency of conventional DCV-DMC simulations. Our simulation results provide the molecular-level density and selectivity profiles along the permeation direction of both CH4 and CO2 molecules in the ZIF-8 membrane, indicating that the parts near membrane surfaces at both ends play a key role in determining the separation selectivity. All densities initially show a sharp increase in the individual maximum within the first outermost unit cell at the feed side and follow a long fluctuating decrease process. Accordingly, the corresponding selectivity profiles initially display a long fluctuating increase in the individual maximum and follow a sharp decrease near the membrane surface at the permeation side. Furthermore, the effects of feed composition, temperature, and pressure on the relevant separation selectivity are also discussed in detail, where the temperature has a greater influence on the separation selectivity than the feed composition and pressure. More importantly, the predicted separation selectivities from our PM-DCV-DMC simulations are well consistent with previous experimental results.


Subject(s)
Carbon Dioxide , Computer Simulation , Gases , Adsorption , Methane , Monte Carlo Method
10.
J Phys Chem B ; 123(31): 6857-6869, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31322891

ABSTRACT

Clarifying the microstructures and time-dependent stability of ionic liquids (ILs) within the confinement of the meso-slit of carbon is the first step to understand the intrinsic synergy effect between ILs and a promising mesoporous carbon electrode. In this work, we adopted molecular dynamics to systematically investigate the behavior of [BMIM][PF6] in the 2.8 nm-wide meso-slit of carbon. The confined ILs formed a pronounced layered spatial distribution and can be divided into three distinct regions, namely, com-, sub-, and cen-layer, according to valley coordinates in the number density profiles. In the com-layer region, the imidazolium rings of ILs possess two dominant orientations, namely, "parallel" and "tilted standing". The rotation ability of all the ions is highly restrained. In the sub-layer and cen-layer regions, a part of the [BMIM] imidazolium ring has a preferred "tilted standing" orientation. The [BMIM] cations are still in a rotational restrain state and show a preferred rotation motion along the x-y plane. The hydrogen bond between [BMIM] cations and [PF6] anions play a crucial role in determining the confined multilayered spatial distribution and distinctive orientation properties of ILs.

11.
Langmuir ; 34(44): 13449-13458, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30350690

ABSTRACT

The ionic liquid (IL)/titanium dioxide (TiO2) interface exists in many application systems, such as nanomaterial synthesis, catalysis, and electrochemistry systems. The nanoscale interfacial properties in the above systems are a common issue. However, directly detecting the interfacial properties of nanoconfined ILs by experimental methods is still challenging. To help better learn about the interfacial issue, molecular dynamics simulations have been performed to explore the structures, vibration spectra, and hydrogen bond (HB) properties at the IL/TiO2 interface. Ethylammonium nitrate (EAN) ILs confined in TiO2 slit pores with different pore widths were studied. A unique vibrational spectrum appeared for EAN ILs confined in a 0.7 nm TiO2 slit, and this phenomenon is related to interfacial hydrogen bonds (HBs). An analysis of the HB types indicated that the interfacial NH3+ group of the cations was in an asymmetric HB environment in the 0.7 nm TiO2 slit, which led to the disappearance of the symmetric N-H stretching mode. In addition, the significant increase in the HB strength between NH3+ groups and the TiO2 surface slowed down the stretching vibration of the N-H bond, resulting in one peak in the vibrational spectra at a lower frequency. For the first time, our simulation work establishes a molecular-level relationship between the vibrational spectrum and the local HB environment of nanoconfined ILs at the IL/TiO2 interface, and this relationship is helpful for interface design in related systems.

12.
Langmuir ; 33(42): 11658-11669, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28930632

ABSTRACT

Based on our previous experimental research, we studied the absorption of CO2 in the ionic liquid, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]), immobilized on TiO2 [rutile (110) ] with different thickness by molecular dynamics simulation. The effects of the properties (hydrophobicity and hydrophilicity) of solid interfaces were also studied with IL immobilized on graphite and TiO2, respectively. We studied the influence of the thickness of IL immobilized on TiO2 on the absorption of CO2 via structural and dynamical properties. The results show that the self-diffusion coefficients of IL and CO2 increase as the thickness of immobilized IL decreases. And the CO2 absorption capacity increases as the thickness of immobilized IL decreases as well. Additionally, more CO2 molecules are absorbed in the region near the solid interface as the thickness of IL decreases. For IL immobilized on graphite, the self-diffusion coefficients of cations and anions are larger than that of IL immobilized on TiO2 with the same thickness. They are also larger than nonimmobilized cations and anions.Besides, the CO2 absorption capacity of IL immobilized on TiO2 is the largest compared with IL immobilized on graphite and nonimmobilized IL with the same thickness. From our simulation work, we try to explore the microscopic mechanism that is unexplored by experimental work, and we found the important role of IL/solid interface for CO2 absorption in immobilized ILs.

SELECTION OF CITATIONS
SEARCH DETAIL
...