Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Adv Nutr ; : 100262, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897385

ABSTRACT

BACKGROUND: Time-restricted eating (TRE) is increasingly popular, but its benefits in combination with exercise still need to be determined. OBJECTIVES: This systematic review and meta-analysis aimed to evaluate the efficacy of TRE combined with exercise compared with control diet with exercise in improving the body composition and metabolic health of adults. METHODS: Five electronic databases were searched for relevant studies. Randomized controlled trials (RCTs) examining the effect of TRE combined with exercise on body composition and metabolic health in adults were included. All results in the meta-analysis are reported as mean difference (MD) with 95% confidence interval (CI). Study quality was assessed using the revised Cochrane Risk of Bias Tool and Grading of Recommendations Assessment, Development, and Evaluation assessment. RESULTS: In total, 19 RCTs comprising 568 participants were included in this systematic review and meta-analysis. TRE combined with exercise likely reduced the participants' body mass (MD: -1.86 kg; 95% CI: -2.75, -0.97 kg) and fat mass (MD: -1.52 kg; 95% CI: -2.07, -0.97 kg) when compared with the control diet with exercise. In terms of metabolic health, the TRE combined with exercise group likely reduced triglycerides (MD: -13.38 mg/dL, 95% CI: -21.22, -5.54 mg/dL) and may result in a reduction in low-density lipoprotein (MD: -8.52 mg/dL; 95% CI: -11.72, -5.33 mg/dL) and a large reduction in leptin (MD: -0.67 ng/mL; 95% CI: -1.02, -0.33 ng/mL). However, TRE plus exercise exhibited no additional benefit on the glucose profile, including fasting glucose and insulin, and other lipid profiles, including total cholesterol and high-density lipoprotein concentrations, compared with the control group. CONCLUSIONS: Combining TRE with exercise may be more effective in reducing body weight and fat mass and improving lipid profile than control diet with exercise. Implementing this approach may benefit individuals aiming to achieve weight loss and enhance their metabolic well-being. This study was registered in PROSPERO as CRD42022353834.

2.
J Agric Food Chem ; 72(14): 8149-8166, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551844

ABSTRACT

Declining estrogen production in postmenopausal females causes osteoporosis in which the resorption of bone exceeds the increase in bone formation. Although clinical drugs are currently available for the treatment of osteoporosis, sustained medication use is accompanied by serious side effects. Corydalis bungeana Herba, a famous traditional Chinese herb listed in the Chinese Pharmacopoeia Commission, constitutes various traditional Chinese Medicine prescriptions, which date back to thousands of years. One of the primary active components of C. bungeana Turcz. is Corynoline (Cor), a plant isoquinoline alkaloid derived from the Corydalis species, which possesses bone metabolism disease therapeutic potential. The study aimed at exploring the effects as well as mechanisms of Cor on osteoclast formation and bone resorption. TRAcP staining, F-actin belt formation, and pit formation were employed for assessing the osteoclast function. Western blot, qPCR, network pharmacology, and docking analyses were used for analyzing the expression of osteoclast-associated genes and related signaling pathways. The study focused on investigating how Cor affected OVX-induced trabecular bone loss by using a mouse model. Cor could weaken osteoclast formation and function by affecting the biological receptor activators of NF-κB and its ligand at various concentrations. Mechanistically, Cor inhibited the NF-κB activation, and the MAPKs pathway stimulated by RANKL. Besides, Cor enhanced the protein stability of the Nrf2, which effectively abolished the RANKL-stimulated ROS generation. According to an OVX mouse model, Cor functions in restoring bone mass, improving microarchitecture, and reducing the ROS levels in the distal femurs, which corroborated with its in vitro antiosteoclastogenic effect. The present study indicates that Cor may restrain osteoclast formation and bone loss by modulating NF-κB/MAPKs and Nrf2 signaling pathways. Cor was shown to be a potential drug candidate that can be utilized for the treatment of osteoporosis.


Subject(s)
Berberine Alkaloids , Bone Resorption , Osteoporosis , Female , Humans , Osteogenesis , NF-kappa B/genetics , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Osteoclasts , Bone Resorption/drug therapy , Bone Resorption/genetics , Bone Resorption/metabolism , Osteoporosis/drug therapy , Osteoporosis/genetics , Osteoporosis/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism , Cell Differentiation
3.
Microbiol Spectr ; 12(5): e0318123, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38511951

ABSTRACT

While the co-existence of comammox Nitrospira with canonical nitrifiers is well documented in diverse ecosystems, there is still a dearth of knowledge about the mechanisms underpinning their interactions. Understanding these interaction mechanisms is important as they may play a critical role in governing nitrogen biotransformation in natural and engineered ecosystems. In this study, we tested the ability of two environmentally relevant factors (nitrogen source and availability) to shape interactions between strict ammonia and nitrite-oxidizing bacteria and comammox Nitrospira in continuous flow column reactors. The composition of inorganic nitrogen species in reactors fed either ammonia or urea was similar during the lowest input nitrogen concentration (1 mg-N/L), but higher concentrations (2 and 4 mg-N/L) promoted significant differences in nitrogen species composition and nitrifier abundances. The abundance and diversity of comammox Nitrospira were dependent on both nitrogen source and input concentrations as multiple comammox Nitrospira populations were preferentially enriched in the urea-fed system. In contrast, their abundance was reduced in response to higher nitrogen concentrations in the ammonia-fed system. The preferential enrichment of comammox Nitrospira in the urea-fed system could be associated with their ureolytic activity calibrated to their ammonia oxidation rates, thus minimizing ammonia accumulation, which may be partially inhibitory. However, an increased abundance of comammox Nitrospira was not associated with a reduced abundance of nitrite oxidizers in the urea-fed system while a negative correlation was found between them in the ammonia-fed system, the latter dynamic likely emerging from reduced availability of nitrite to strict nitrite oxidizers at low ammonia concentrations. IMPORTANCE: Nitrification is an essential biological process in drinking water and wastewater treatment systems for treating nitrogen pollution. The discovery of comammox Nitrospira and their detection alongside canonical nitrifiers in these engineered ecosystems have made it necessary to understand the environmental conditions that regulate their abundance and activity relative to other better-studied nitrifiers. This study aimed to evaluate two important factors that could potentially influence the behavior of nitrifying bacteria and, therefore, impact nitrification processes. Column reactors fed with either ammonia or urea were systematically monitored to capture changes in nitrogen biotransformation and the nitrifying community as a function of influent nitrogen concentration, nitrogen source, and reactor depth. Our findings show that with increased ammonia availability, comammox Nitrospira decreased in abundance while nitrite oxidizers abundance increased. Yet, in systems with increasing urea availability, comammox Nitrospira abundance and diversity increased without an associated reduction in the abundance of canonical nitrifiers.


Subject(s)
Ammonia , Nitrification , Nitrites , Nitrogen , Urea , Nitrogen/metabolism , Ammonia/metabolism , Nitrites/metabolism , Urea/metabolism , Oxidation-Reduction , Bioreactors/microbiology , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
4.
Environ Int ; 185: 108538, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422875

ABSTRACT

Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria. Among the 15,084 observed amplicon sequence variants (ASVs), the 33 core ASVs covered 72.8 %, while the 12 shared core ASVs accounted for 62.2 % of the total sequences. Remarkably, it was found that the species richness and diversity of biofilm communities correlated with pipe age. The relative abundance of ASV2 (f_Sphingomonadaceae) was lower for pipe ages 40-50 years (7.9 %) than for pipe ages 10-20 years (59.3 %), while the relative abundance of ASV10 (f_Hyphomonadaceae) was higher for pipe ages 40-50 years (19.5 %) than its presence at pipe ages 20-30 years (1.9 %). The community of the premise plumbing biofilm had significantly higher species richness and diversity than that of the service line, while the steel-plastics composite pipe interior lined with polyethylene (S-PE) harbored significantly more diverse biofilm than the galvanized steel pipes (S-Zn). Interestingly, S-PE was enriched with ASV27 (g_Mycobacterium), while S-Zn pipes were enriched with ASV13 (g_Pseudomonas). Moreover, the network analysis showed that five rare ASVs, not core ASVs, were keystone members in biofilm communities, indicating the importance of rare members in the function and stability of biofilm communities. This manuscript provides novel insights into real-world service lines and premise plumbing microbiology, regarding lifetime dynamics (pipe age 10-50 years), and the influences of pipe types (premise plumbing vs. service line) and pipe materials (S-Zn vs. S-PE).


Subject(s)
Drinking Water , Sanitary Engineering , Water Supply , RNA, Ribosomal, 16S/genetics , Water Microbiology , Bacteria/genetics , Biofilms , Steel , Drinking Water/microbiology
5.
Phytomedicine ; 125: 155342, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295665

ABSTRACT

BACKGROUND: Type 2 diabetes is often linked with osteoporosis (T2DOP), a condition that accelerates bone degeneration and increases the risk of fractures. Unlike conventional menopausal osteoporosis, the diabetic milieu exacerbates the likelihood of fractures and osteonecrosis. In particular poliumoside (Pol), derived from Callicarpa kwangtungensis Chun, has shown promising anti-oxidant and anti-inflammatory effects. Yet, its influence on T2DOP remains to be elucidated. PURPOSE: The focus of this study was to elucidate the influence of Pol in HGHF-associated ferroptosis and its implications in T2DOP. STUDY DESIGN: A murine model of T2DOP was established using a minimal dosage of streptozotocin (STZ) through intraperitoneal infusion combined with a diet high in fat and sugar. Concurrently, to mimic the diabetic condition in a lab environment, bone mesenchymal stem cells (BMSCs) were maintained in a high-glucose and high-fat (HGHF) setting. METHODS: The impact of Pol on BMSCs in an HGHF setting was determined using methods, such as BODIPY-C11, FerroOrange staining, mitochondrial functionality evaluations, and Western blot methodologies, coupled with immunoblotting and immunofluorescence techniques. To understand the role of Pol in a murine T2DOP model, techniques including micro-CT, hematoxylin and eosin (H&E) staining, dual-labeling with calcein-alizarin red, and immunohistochemistry were employed for detailed imaging and histological insights. RESULTS: Our findings suggest that Pol acts against HGHF-induced bone degradation and ferroptosis, as evidenced by an elevation in glutathione (GSH) and a decline in malondialdehyde (MDA) levels, lipid peroxidation, and mitochondrial reactive oxygen species (ROS). Furthermore, Pol treatment led to increased bone density, enhanced GPX4 markers, and reduced ROS in the distal femur region. On investigating the underlying mechanism of action, it was observed that Pol triggers the Nrf2/GPX4 pathway, and the introduction of lentivirus-Nrf2 negates the beneficial effects of Pol in HGHF-treated BMSCs. CONCLUSION: Pol is effective in treating T2DOP by activating the Nrf2/GPX4 signaling pathway to inhibit ferroptosis.


Subject(s)
Caffeic Acids , Diabetes Mellitus, Type 2 , Ferroptosis , Glycosides , Osteoporosis , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , NF-E2-Related Factor 2 , Reactive Oxygen Species , Osteoporosis/drug therapy , Osteoporosis/prevention & control
6.
Int Immunopharmacol ; 128: 111469, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38211480

ABSTRACT

Osteoarthritis (OA) is a prevalent joint disorder pathologically correlated to chondrocyte ferroptosis. Gamma-oryzanol (γ-Ory), as a first-line drug for autonomic disorders, aroused our interest because of its antioxidant, lipid-lowering, and hypoglycemic potential. The purpose of this study was to investigate the potential impact and mechanism of γ-Ory in treating OA. And the inhibition of γ-Ory in extracellular matrix molecule (ECM) degradation, ferroptosis, and Keap1-Nrf2 binding in IL-1ß-exposed chondrocytes was detected via immunoblotting, immunofluorescence, and co-immunoprecipitation. Micro-CT, SO staining, and immunofluorescence have been conducted to assess the impact of γ-Ory treatment on ACLT-mediated OA in rats at both imaging and histological stages. We found that γ-Ory dose-dependently suppressed IL-1ß-induced ECM deterioration and chondrocyte ferroptosis. Our animal experiments revealed that γ-Ory delayed ACLT-mediated OA development. Mechanistically, γ-Ory interfered with the binding of Keap1 to Nrf2 to promote the latter's nuclear import, thereby increasing the expression of detoxification enzymes. Summarily, our works support γ-Ory's potential as a candidate drug for the treatment of OA.


Subject(s)
Ferroptosis , Osteoarthritis , Phenylpropionates , Animals , Rats , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Osteoarthritis/drug therapy , Phenylpropionates/therapeutic use
7.
Clin Transl Med ; 13(9): e1369, 2023 09.
Article in English | MEDLINE | ID: mdl-37649137

ABSTRACT

BACKGROUND: The imbalance between osteoblasts and osteoclasts may lead to osteoporosis. Osteoblasts and osteoclasts have different energy requirements, with aerobic glycolysis being the prominent metabolic feature of osteoblasts, while osteoclast differentiation and fusion are driven by oxidative phosphorylation. METHODS: By polymerase chain reaction as well as Western blotting, we assayed coactivator-associated arginine methyltransferase 1 (CARM1) expression in bone tissue, the mouse precranial osteoblast cell line MC3T3-E1 and the mouse monocyte macrophage leukaemia cell line RAW264.7, and expression of related genes during osteogenic differentiation and osteoclast differentiation. Using gene overexpression (lentivirus) and loss-of-function approach (CRISPR/Cas9-mediated knockout) in vitro, we examined whether CARM1 regulates osteogenic differentiation and osteoblast differentiation by metabolic regulation. Transcriptomic assays and metabolomic assays were used to find the mechanism of action of CARM1. Furthermore, in vitro methylation assays were applied to clarify the arginine methylation site of PPP1CA by CARM1. RESULTS: We discovered that CARM1 reprogrammed glucose metabolism in osteoblasts and osteoclasts from oxidative phosphorylation to aerobic glycolysis, thereby promoting osteogenic differentiation and inhibiting osteoclastic differentiation. In vivo experiments revealed that CARM1 significantly decreased bone loss in osteoporosis model mice. Mechanistically, CARM1 methylated R23 of PPP1CA, affected the dephosphorylation of AKT-T450 and AMPK-T172, and increased the activities of phosphofructokinase-1 and pructose-2,6-biphosphatase3, causing an up-regulation of glycolytic flux. At the same time, as a transcriptional coactivator, CARM1 regulated the expression of pyruvate dehydrogenase kinase 3, which resulted in the inhibition of pyruvate dehydrogenase activity and inhibition of the tricarboxylic acid cycle, leading to a subsequent decrease in the flux of oxidative phosphorylation. CONCLUSIONS: These findings reveal for the first time the mechanism by which CARM1 affects both osteogenesis and osteoclast differentiation through metabolic regulation, which may represent a new feasible treatment strategy for osteoporosis.


Subject(s)
Arginine , Osteogenesis , Animals , Mice , Osteogenesis/genetics , Methylation , Cell Differentiation/genetics , Arginine/genetics , Glucose
8.
Water Res ; 241: 120143, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37276656

ABSTRACT

Biofilm detachment contributes to water quality deterioration. However, the contributions of biofilm detachment from different pipes have not been quantified or compared. Following the introduction of partial reverse osmosis (RO) in drinking water production, this study analyzed particles at customers' ends and tracked their origins to water distribution mains and service lines. For doing so, filter bags were installed in front of water meters to capture upstream detached particles, while biofilm from water main and service line were sampled by cutting pipe specimens. The results showed that elemental concentrations of the biofilm in mains were higher than those of service lines (54.3-268.5 vs. 27.1-44.4 µg/cm2), both dominated by Ca. Differently, filter bags were dominated by Fe/Mn (77.5-98.1%). After introducing RO, Ca significantly decreased in biofilms of mains but not service lines, but the released Fe/Mn rather than Ca arrived at customers' ends. The ATP concentrations of service lines were higher than mains, which decreased on mains but increased in service lines after introducing RO. For the core ASVs, 13/24 were shared by service lines (17), mains (21), and filter bags (17), which were assigned mainly to Nitrospira spp., Methylomagnum spp., Methylocytis spp., and IheB2-23 spp. According to source tracking results, service lines contributed more than mains to the particulate material collected by filter bags (57.6 ± 13.2% vs. 13.0 ± 11.6%). To the best of our knowledge, the present study provides the first evidence of service lines' direct and quantitative contributions to potential water quality deterioration at customers' ends. This highlights the need for the appropriate management of long-neglected service line pipes, e.g., regarding material selection, length optimization, and proper regulation.


Subject(s)
Drinking Water , Water Quality , Water Supply , Water Microbiology , Bacteria , Biofilms
9.
Water Res ; 241: 120149, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37270942

ABSTRACT

Premise plumbing plays an essential role in determining the final quality of drinking water consumed by customers. However, little is known about the influences of plumbing configuration on water quality changes. This study selected parallel premise plumbing in the same building with different configurations, i.e., laboratory and toilet plumbing. Water quality deteriorations induced by premise plumbing under regular and interrupted water supply were investigated. The results showed that most of the water quality parameters did not vary under regular supply, except Zn, which was significantly increased by laboratory plumbing (78.2 to 260.7 µg/l). For the bacterial community, the Chao1 index was significantly increased by both plumbing types to a similar level (52 to 104). Laboratory plumbing significantly changed the bacterial community, but toilet plumbing did not. Remarkably, water supply interruption/restoration led to serious water quality deterioration in both plumbing types but resulted in different changes. Physiochemically, discoloration was observed only in laboratory plumbing, along with sharp increases in Mn and Zn. Microbiologically, the increase in ATP was sharper in toilet plumbing than in laboratory plumbing. Some opportunistic pathogen-containing genera, e.g., Legionella spp. and Pseudomonas spp., were present in both plumbing types but only in disturbed samples. This study highlighted the esthetic, chemical, and microbiological risks associated with premise plumbing, for which system configuration plays an important role. Attention should be given to optimizing premise plumbing design for managing building water quality.


Subject(s)
Sanitary Engineering , Water Quality , Water Microbiology , Water Supply , Pseudomonas
10.
Stem Cells Transl Med ; 12(5): 307-321, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37010483

ABSTRACT

N6-methyladenosine (m6A) methylation, a well-known modification with new epigenetic functions, has been reported to participate in the progression of osteoporosis (OP), providing novel insights into the pathogenesis of OP. However, as the key component of m6A methylation, Wilms tumor 1-associated protein (WTAP) has not been studied in OP. Here we explored the biological role and underlying mechanism of WTAP in OP and the differentiation of bone marrow mesenchymal stem cells (BMMSCs). We demonstrated that WTAP was expressed at low levels in bone specimens from patients with OP and OVX mice. Functionally, WTAP promoted osteogenic differentiation and inhibited adipogenic differentiation of BMMSCs in vitro and in vivo. In addition, microRNA-29b-3p (miR-29b-3p) was identified as a downstream target of WTAP. M6A modifications regulated by WTAP led to increased miR-29b-3p expression. WTAP interacted with the microprocessor protein DGCR8 and accelerated the maturation of pri-miR-29b-3p in an m6A-dependent manner. Target prediction and dual-luciferase reporter assays identified the direct binding sites of miR-29b-3p with histone deacetylase 4 (HDAC4). WTAP-mediated m6A modification promoted osteogenic differentiation and inhibited adipogenic differentiation of BMMSCs through the miR-29b-3p/HDAC4 axis. Furthermore, WTAP-mediated m6A methylation negatively regulates osteoclast differentiation. Collectively, our study first identified a critical role of WTAP-mediated m6A methylation in BMMSC differentiation and highlighted WTAP as a potential therapeutic target for OP treatment.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Animals , Mice , Bone Marrow Cells , Cell Differentiation/genetics , Histone Deacetylases/genetics , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , RNA-Binding Proteins/metabolism , Humans
11.
Phytomedicine ; 114: 154739, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37004404

ABSTRACT

BACKGROUND: Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Estrogen deficiency-mediated hyperactivated osteoclasts is the initiating factor for bone loss, which is regulated by nuclear factor-κB (NF-κB) signaling. Safranal (Saf) is a monoterpene aldehyde produced from Saffron (Crocus sativus L.) and possesses multiple biological properties, particularly the anti-inflammatory property. However, Saf's role in osteoporosis remains unknown. PURPOSE: This study aims to validate the role of Saf in osteoporosis and explore the potential mechanism. STUDY DESIGN: The RANKL-exposed mouse BMM (bone marrow monocytes) and the castration-mediated osteoporosis model were applied to explore the effect and mechanism of Saf in vitro and in vivo. METHOD: The effect of Saf on osteoclast formation and function were assessed by TRAcP staining, bone-resorptive experiment, qPCR, immunoblotting and immunofluorescence, etc. Micro-CT, HE, TRAcP and immunohistochemical staining were performed to estimate the effects of Saf administration on OVX-mediated osteoporosis in mice at imaging and histological levels. RESULTS: Saf concentration-dependently inhibited RANKL-mediated osteoclast differentiation without affecting cellular viability. Meanwhile, Saf-mediated anti-osteolytic capacity and Sirt1 upregulation were also found in ovariectomized mice. Mechanistically, Saf interfered with NF-κB signaling by activating Sirt1 to increase p65 deacetylation and inactivating IKK to decrease IκBα degradation. CONCLUSION: Our results support the potential application of Saf as a therapeutic agent for osteoporosis.


Subject(s)
Osteoporosis , Animals , Mice , Mice, Inbred C57BL , Osteoporosis/drug therapy , Osteoporosis/metabolism , Estrogens/deficiency , Estrogens/metabolism , Female , Osteoclasts , Bone Resorption/drug therapy , Bone Resorption/metabolism , Ovariectomy , NF-kappa B/metabolism , Acetylation
12.
Environ Sci Technol ; 57(9): 3645-3660, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36827617

ABSTRACT

The biogeography of eukaryotes in drinking water systems is poorly understood relative to that of prokaryotes or viruses, limiting the understanding of their role and management. A challenge with studying complex eukaryotic communities is that metagenomic analysis workflows are currently not as mature as those that focus on prokaryotes or viruses. In this study, we benchmarked different strategies to recover eukaryotic sequences and genomes from metagenomic data and applied the best-performing workflow to explore the factors affecting the relative abundance and diversity of eukaryotic communities in drinking water distribution systems (DWDSs). We developed an ensemble approach exploiting k-mer- and reference-based strategies to improve eukaryotic sequence identification and identified MetaBAT2 as the best-performing binning approach for their clustering. Applying this workflow to the DWDS metagenomes showed that eukaryotic sequences typically constituted small proportions (i.e., <1%) of the overall metagenomic data with higher relative abundances in surface water-fed or chlorinated systems with high residuals. The α and ß diversities of eukaryotes were correlated with those of prokaryotic and viral communities, highlighting the common role of environmental/management factors. Finally, a co-occurrence analysis highlighted clusters of eukaryotes whose members' presence and abundance in DWDSs were affected by disinfection strategies, climate conditions, and source water types.


Subject(s)
Drinking Water , Metagenome , Eukaryota/genetics , Metagenomics
13.
Int Immunopharmacol ; 117: 109893, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36842234

ABSTRACT

Osteoporosis is a prevalent bone metabolic disease in menopause, and long-term medication is accompanied by serious side effects. Ginger, a food spice and traditional medicine with ancient history, exhibits the potential to alleviate osteoporosis in preclinical experiments, whereas its complex composition leads to ambiguous pharmacological mechanisms. The purpose of this study was to investigate the effect and mechanism of Ced in estrogen-deficient osteoporosis, a sesquiterpene alcohol recently discovered from Ginger with multiple pharmacological properties. RANKL was stimulated BMM (bone marrow macrophages) differentiation into osteoclasts in vitro. And the osteoclast activity and number were assessed by TRAcP and SEM. We found that Ced mitigated RANKL-induced osteoclastogenesis by descending the ROS content and obstructing NFATc1, NF-κB, and MAPK signaling. Also, Ced-mediated anti-osteolytic property was found in ovariectomized mice by Micro-CT scanning and histological staining. Summarily, our works demonstrated the anti-osteoporotic potential of Cedrol in Ginger for the first time, which also offered more pharmacological evidence for Ginger as food or medicine used for bone metabolic disease.


Subject(s)
Osteoporosis , Zingiber officinale , Female , Animals , Mice , Reactive Oxygen Species/metabolism , Osteoclasts , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteogenesis , NF-kappa B/metabolism , Estrogens/metabolism , RANK Ligand/metabolism , NFATC Transcription Factors/metabolism , Cell Differentiation
14.
Cell Death Dis ; 14(1): 33, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650131

ABSTRACT

An imbalance in the differentiation potential of bone marrow mesenchymal stem cells (BMSCs) is an important pathogenic mechanism underlying osteoporosis (OP). N6-methyladenosine (m6A) is the most common post-transcriptional modification in eukaryotic cells. The role of the Wilms' tumor 1-associated protein (WTAP), a member of the m6A functional protein family, in regulating BMSCs differentiation remains unknown. We used patient-derived and mouse model-derived samples, qRT-PCR, western blot assays, ALP activity assay, ALP, and Alizarin Red staining to determine the changes in mRNA and protein levels of genes and proteins associated with BMSCs differentiation. Histological analysis and micro-CT were used to evaluate developmental changes in the bone. The results determined that WTAP promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. We used co-immunoprecipitation (co-IP), RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP), RNA pulldown, and dual-luciferase assay to explore the direct mechanism. Mechanistically, the expression of WTAP increased during osteogenic differentiation and significantly promoted pri-miR-181a and pri-miR-181c methylation, which was recognized by YTHDC1, and increased the maturation to miR-181a and miR-181c. MiR-181a and miR-181c inhibited the mRNA expression of SFRP1, promoting the osteogenic differentiation of BMSCs. Our results demonstrated that the WTAP/YTHDC1/miR-181a and miR-181c/SFRP1 axis regulated the differentiation fate of BMSCs, suggesting that it might be a potential therapeutic target for osteoporosis.


Subject(s)
Cell Cycle Proteins , Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , RNA Splicing Factors , Animals , Mice , Bone Marrow Cells/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cells, Cultured , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Osteogenesis/genetics , Osteoporosis/pathology , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA, Messenger/genetics , Humans
15.
Sports Med ; 53(1): 125-150, 2023 01.
Article in English | MEDLINE | ID: mdl-36001290

ABSTRACT

BACKGROUND: Wearing face masks in public is an effective strategy for preventing the spread of viruses; however, it may negatively affect exercise responses. Therefore, this review aimed to explore the effects of wearing different types of face masks during exercise on various physiological and psychological outcomes in healthy individuals. METHODS: A literature search was conducted using relevant electronic databases, including Medline, PubMed, Embase, SPORTDiscus, Web of Science, and Cochrane Central Register of Controlled Trials on April 05, 2022. Studies examining the effect of mask wearing (surgical mask, cloth mask, and FFP2/N95 respirator) during exercise on various physiological and psychological parameters in apparently healthy individuals were included. For meta-analysis, a random effects model was used. Mean difference (MD) or standardized MD (SMD) with 95% confidence intervals (CI) were calculated to analyze the total effect and the effect in subgroups classified based on face mask and exercise types. The quality of included studies was examined using the revised Cochrane risk-of-bias tool. RESULTS: Forty-five studies with 1264 participants (708 men) were included in the systematic review. Face masks had significant effects on gas exchange when worn during exercise; this included differences in oxygen uptake (SMD - 0.66, 95% CI - 0.87 to - 0.45), end-tidal partial pressure of oxygen (MD - 3.79 mmHg, 95% CI - 5.46 to - 2.12), carbon dioxide production (SMD - 0.77, 95% CI - 1.15 to - 0.39), and end-tidal partial pressure of carbon dioxide (MD 2.93 mmHg, 95% CI 2.01-3.86). While oxygen saturation (MD - 0.48%, 95% CI - 0.71 to - 0.26) decreased slightly, heart rate was not affected. Mask wearing led to higher degrees of rating of perceived exertion, dyspnea, fatigue, and thermal sensation. Moreover, a small effect on exercise performance was observed in individuals wearing FFP2/N95 respirators (SMD - 0.42, 95% CI - 0.76 to - 0.08) and total effect (SMD - 0.23, 95% CI - 0.41 to - 0.04). CONCLUSION: Wearing face masks during exercise modestly affected both physiological and psychological parameters, including gas exchange, pulmonary function, and subjective discomfort in healthy individuals, although the overall effect on exercise performance appeared to be small. This review provides updated information on optimizing exercise recommendations for the public during the COVID-19 pandemic. SYSTEMATIC REVIEW REGISTRATION NUMBER: This study was registered in the International Prospective Register of Systematic Review (PROSPERO) database (registration number: CRD42021287278).


Subject(s)
COVID-19 , Male , Humans , COVID-19/prevention & control , Pandemics , Carbon Dioxide , Exercise , Oxygen
16.
Front Genet ; 13: 969856, 2022.
Article in English | MEDLINE | ID: mdl-36226187

ABSTRACT

Background: Cuproptosis is a recently discovered form of programmed cell death. Ferredoxin 1 (FDX1) is a key gene that mediates this process. However, the role of FDX1 in human tumors is not clear. Methods: We comprehensively analyzed the differential expression and genetic alterations of FDX1 using multiomics data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database. Subsequently, we explored the association between FDX1 and tumor parameters such as genomic instability, RNA methylation modifications, immune infiltration and pathway activity. In addition, we performed functional enrichment analysis and assessed the sensitivity potential of FDX1-related drugs. Finally, we experimentally verified the functional effects of FDX1. Results: The analysis revealed differential expression of FDX1 in a variety of tumors. By analyzing the association of FDX1 expression with genomic instability, immune cell infiltration, signaling pathway etc. We explored the role of FDX1 in regulating cell activity. Also, we evaluated the function of FDX1 in biologic process and drug sensitivity. Our experimental results demonstrated that FDX1 exerts its antitumor effects through cuproptosis in liver hepatocellular carcinoma and non-small cell lung cancer cell lines. Conclusion: Our study reveals the functional effects of FDX1 in tumors and deepens the understanding of the effects of FDX1. We validated the inhibitory effect of FDX1 in copper induced cell-death, confirming the role of FDX1 as a cuproptosis biomarker.

17.
J Nanobiotechnology ; 20(1): 220, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36310171

ABSTRACT

BACKGROUND: Glucocorticoids (GCs) overuse is associated with decreased bone mass and osseous vasculature destruction, leading to severe osteoporosis. Platelet lysates (PL) as a pool of growth factors (GFs) were widely used in local bone repair by its potent pro-regeneration and pro-angiogenesis. However, it is still seldom applied for treating systemic osteopathia due to the lack of a suitable delivery strategy. The non-targeted distribution of GFs might cause tumorigenesis in other organs. RESULTS: In this study, PL-derived exosomes (PL-exo) were isolated to enrich the platelet-derived GFs, followed by conjugating with alendronate (ALN) grafted PEGylated phospholipid (DSPE-PEG-ALN) to establish a bone-targeting PL-exo (PL-exo-ALN). The in vitro hydroxyapatite binding affinity and in vivo bone targeting aggregation of PL-exo were significantly enhanced after ALN modification. Besides directly modulating the osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs), respectively, PL-exo-ALN also facilitate their coupling under GCs' stimulation. Additionally, intravenous injection of PL-exo-ALN could successfully rescue GCs induced osteoporosis (GIOP) in vivo. CONCLUSIONS: PL-exo-ALN may be utilized as a novel nanoplatform for precise infusion of GFs to bone sites and exerts promising therapeutic potential for GIOP.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Osteoporosis , Humans , Exosomes/metabolism , Glucocorticoids/metabolism , Mesenchymal Stem Cells/metabolism , Osteogenesis , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Alendronate/pharmacology
18.
Stem Cell Res Ther ; 13(1): 304, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35841013

ABSTRACT

BACKGROUND: Human dental pulp stem cells (hDPSCs) have received widespread attention in the fields of tissue engineering and regenerative medicine. Although amphiregulin (AREG) has been shown to play a vital function in the biological processes of various cell types, its effects on DPSCs remain largely unknown. The aim of this study was to explore the specific role of AREG as a biologically active factor in the regeneration of dental pulp tissue. METHODS: The growth of hDPSCs, together with their proliferation and apoptosis, in response to AREG was examined by CCK-8 assay and flow cytometry. We explored the effects of AREG on osteo/odontogenic differentiation in vitro and investigated the regeneration and mineralization of hDPSCs in response to AREG in vivo. The effects of AREG gain- and loss-of-function on DPSC differentiation were investigated following transfection using overexpression plasmids and shRNA, respectively. The involvement of the mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K)/Akt pathways in the mineralization process and the expression of odontoblastic marker proteins after AREG induction were investigated by using Alizarin Red S staining and Western blotting, respectively. RESULTS: AREG (0.01-0.1 µg/mL) treatment of hDPSCs from 1 to 7 days increased hDPSCs growth and affected apoptosis minimally compared with negative controls. AREG exposure significantly promoted hDPSC differentiation, shown by increased mineralized nodule formation and the expression of odontoblastic marker protein expression. In vivo micro-CT imaging and quantitative analysis showed significantly greater formation of highly mineralized tissue in the 0.1 µg/mL AREG exposure group in DPSC/NF-gelatin-scaffold composites. AREG also promoted extracellular matrix production, with collagen fiber, mineralized matrix, and calcium salt deposition on the composites, as shown by H&E, Masson, and Von Kossa staining. Furthermore, AREG overexpression boosted hDPSC differentiation while AREG silencing inhibited it. During the differentiation of hDPSCs, AREG treatment led to phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and PI3K/Akt. Notably, a specific inhibitor of ERK, JNK, and PI3K/Akt signaling markedly reduced AREG-induced differentiation, as well as levels of phosphorylated ERK and JNK in hDPSCs. CONCLUSIONS: The data indicated that AREG promoted odontoblastic differentiation and facilitated regeneration and mineralization processes in hDPSCs.


Subject(s)
Dental Pulp , Stem Cells , Amphiregulin/genetics , Amphiregulin/metabolism , Amphiregulin/pharmacology , Cell Differentiation , Cells, Cultured , Dental Pulp/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Stem Cells/metabolism
19.
Phytomedicine ; 102: 154176, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35660354

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by a local inflammatory response associated with the IL-1ß/NLRP3 inflammasome positive feedback loop. Rice bran-derived gamma-oryzanol (Ory) as a sterol ferulate has attracted much attention due to its powerful anti-inflammatory, hypoglycemic and hypolipidemic health effects. As a clinical pharmaceutical for autonomic disorders, Ory's role in musculoskeletal degenerative disease remains unknown. PURPOSE: This study aims to validate the role of Ory in IVDD and explore the potential mechanism. STUDY DESIGN: Establishing the in vitro and in vivo IVDD models to detect the protective effect and molecular mechanism of Ory. METHOD: The anti-ECM degradation, antioxidant and anti-NLRP3 inflammasome activation effects of Ory on IL-1ß-stimulated nucleus pulposus (NP) cells were assessed by immunoblotting and immunofluorescence, etc. MRI, S-O staining and immunohistochemistry were performed to estimate the effects of Ory administration on acupuncture-mediated IVDD in rats at imaging and histological levels. RESULTS: Ory treatment inhibited IL-1ß-mediated ECM degradation, oxidative stress and NLRP3 inflammasome activation in NP cells. By interfering with NF-κB signaling and ROS overproduction, Ory interrupted IL-1ß/NLRP3-inflammasome positive cycle. In vivo experiments showed that Ory delayed acupuncture-mediated IVDD development. CONCLUSION: Our results support the potential application of Ory as a therapeutic compound for IVDD.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Phenylpropionates , Rats
20.
Water Res ; 218: 118484, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35504157

ABSTRACT

Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.


Subject(s)
Disinfectants , Drinking Water , Viruses , Water Purification , Bacteria/genetics , Chlorine , Disinfectants/pharmacology , Metagenomics , Virome , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...