Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 11(2)2018 04 23.
Article in English | MEDLINE | ID: mdl-29690576

ABSTRACT

5-aza-2',2'-difluorodeoxycytidine (NUC013) has been shown to be significantly safer and more effective than decitabine in xenograft models of human leukemia and colon cancer. However, it suffers from a similar short half-life as other DNA methyltransferase inhibitors with a 5-azacytosine base, which is problematic for nucleosides that primarily target tumor cells in S phase. Because of the relative instability of 5-azanucleosides, a prodrug approach was developed to improve the pharmacology of NUC013. NUC013 was conjugated with trimethylsilanol (TMS) at the 3' and 5' position of the sugar, rendering the molecule hydrophobic and producing 3',5'-di-trimethylsilyl-2',2'-difluoro-5-azadeoxycytidine (NUC041). NUC041 was designed to be formulated in a hydrophobic vehicle, protecting it from deamination and hydrolysis. In contact with blood, the TMS moieties are readily hydrolyzed to release NUC013. The half-life of NUC013 administered intravenously in mice is 20.1 min, while that of NUC013 derived from intramuscular NUC041 formulated in a pegylated-phospholipid depot is 3.4 h. In a NCI-H460 xenograft of non-small cell lung cancer, NUC013 was shown to significantly inhibit tumor growth and improve survival. Treatment with NUC041 also led to significant tumor growth inhibition. However, NUC041-treated mice had significantly more tumors ulcerate than either NUC013 treated mice or saline control mice, and such ulceration occurred at significantly lower tumor volumes. In these nude mice, tumor regression was likely mediated by the derepression of the tumor suppressor gene p53 and resultant activation of natural killer (NK) cells.

2.
Pharmaceuticals (Basel) ; 11(1)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415423

ABSTRACT

Vitamin E phosphate (VEP) nucleoside prodrugs are designed to bypass two mechanisms of tumor resistance to therapeutic nucleosides: nucleoside transport and kinase downregulation. Certain isoforms of vitamin E (VE) have shown activity against solid and hematologic tumors and result in chemosensitization. Because gemcitabine is one of the most common chemotherapeutics for the treatment of cancer, it was used to demonstrate the constructs utility. Four different VE isoforms were conjugated with gemcitabine at the 5' position. Two of these were δ-tocopherol-monophosphate (MP) gemcitabine (NUC050) and δ-tocotrienol-MP gemcitabine (NUC052). NUC050 was shown to be able to deliver gemcitabine-MP intracellularly by a nucleoside transport independent mechanism. Its half-life administered IV in mice was 3.9 h. In a mouse xenograft model of non-small cell lung cancer (NSCLC) NCI-H460, NUC050 at a dose of 40 mg/kg IV qwk × 4 resulted in significant inhibition to tumor growth on days 11-31 (p < 0.05) compared to saline control (SC). Median survival was 33 days (NUC050) vs. 25.5 days (SC) ((hazard ratio) HR = 0.24, p = 0.017). Further, NUC050 significantly inhibited tumor growth compared to historic data with gemcitabine at 135 mg/kg IV q5d × 3 on days 14-41 (p < 0.05). NUC052 was administered at a dose of 40 mg/kg IV qwk × 2 followed by 50 mg/kg qwk × 2. NUC052 resulted in inhibition to tumor growth on days 14-27 (p < 0.05) and median survival was 34 days (HR = 0.27, p = 0.033). NUC050 and NUC052 have been shown to be safe and effective in a mouse xenograft of NSCLC.

3.
Pharmaceuticals (Basel) ; 10(3)2017 07 20.
Article in English | MEDLINE | ID: mdl-28726739

ABSTRACT

Tumor suppressor genes can be silenced genetically as well as epigenetically. One approach to reversing epigenetic suppression of tumor suppressor genes is to inhibit DNA methyl transferase. 5-aza-2',2'-diflurorodeoxycytidine (NUC013) is a novel DNA methyl transferase and ribonucleotide reductase inhibitor that is a more potent inhibitor of growth than decitabine in the NCI 60 cancer cell line panel. NUC013 is more active than decitabine against p53-null/mutant cancer cell lines (p = 0.027) but is even more so against p53 wild-type (WT) cell lines (p = 0.0025). The maximum tolerated dose in mice of NUC013 is greater than 120 mg/kg administered intravenously for three consecutive days a week for three weeks. With this regimen and a dose of 20 mg/kg in a human leukemia HL-60 (p53-null) NCr-nu/nu mouse xenograft model (n = 10/group), NUC013 demonstrated a survival benefit (saline median survival (MS) = 26.5 days, NUC013 MS = 32 days and hazard ratio (HR) = 0.26 (p = 0.032)). In a colon cancer LoVo (TP53 WT) xenograft, mice treated with decitabine at 5 mg/kg had worse survival than saline controls (decitabine MS = 31 days, saline MS > 60 days and HR = 26.89 (p < 0.0001)). At a dose of 20 mg/kg NUC013, mean tumor volume in the LoVo xenografts was lower than controls by 50.9% and at 40 mg/kg by 53.7% (both p < 0.0001).

4.
Cancer Chemother Pharmacol ; 63(6): 1035-48, 2009 May.
Article in English | MEDLINE | ID: mdl-18791717

ABSTRACT

PURPOSE: Our objective was to build a mechanism-based pharmacodynamic model for the time course of neutropenia in cancer patients following paclitaxel treatment with a tocopherol-based Cremophor-free formulation (Tocosol Paclitaxel) and Cremophor EL-formulated paclitaxel (Taxol). METHODS: A randomized two-way crossover trial was performed with 35 adult patients who received 175 mg/m(2) paclitaxel as either 15 min (Tocosol Paclitaxel) or 3 h (Taxol) intravenous infusions. Paclitaxel concentrations were measured by LC-MS/MS. NONMEM VI was used for population pharmacodynamics. RESULTS: The cytotoxic effect on neutrophils was described by four mechanism-based models predicated on known properties of paclitaxel that used unbound concentrations in the central, deep peripheral or an intracellular compartment as forcing functions. Tocosol Paclitaxel was estimated to release 9.8% of the dose directly into the deep peripheral compartment (DPC). All models provided reasonable fitting of neutropenic effects. The model with the best predictive performance assumed that this dose fraction was released into 22.5% of the DPC which included the site of toxicity. The second-order cytotoxic rate constant was 0.00211 mL/ng per hour (variability: 52% CV). The relative exposure at the site of toxicity was 2.21 +/- 0.41 times (average +/- SD) larger for Tocosol Paclitaxel compared to Taxol. Lifespan was 11.0 days for progenitor cells, 1.95 days for maturating cells, and 4.38 days for neutrophils. Total drug exposure in blood explained half of the variance in nadir to baseline neutrophil count ratio. CONCLUSIONS: The relative exposure of unbound paclitaxel at the site of toxicity was twice as large for Tocosol Paclitaxel compared to Taxol. The proposed mechanism-based models explained the extent and time course of neutropenia jointly for both formulations.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacokinetics , Models, Biological , Neoplasms/drug therapy , Neutropenia/chemically induced , Neutrophils/drug effects , Paclitaxel/pharmacokinetics , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/blood , Antineoplastic Agents, Phytogenic/chemistry , Cell Survival/drug effects , Chemistry, Pharmaceutical , Chromatography, Liquid , Cross-Over Studies , Female , Humans , Leukocyte Count , Linear Models , Male , Middle Aged , Neutrophils/cytology , Paclitaxel/administration & dosage , Paclitaxel/adverse effects , Paclitaxel/blood , Paclitaxel/chemistry , Stem Cells/cytology , Stem Cells/drug effects , Structure-Activity Relationship , Tandem Mass Spectrometry
5.
Cancer Chemother Pharmacol ; 63(6): 1049-63, 2009 May.
Article in English | MEDLINE | ID: mdl-18791718

ABSTRACT

PURPOSE: Our objectives were (1) to compare the disposition and in vivo release of paclitaxel between a tocopherol-based Cremophor-free formulation (Tocosol Paclitaxel) and Cremophor EL-formulated paclitaxel (Taxol) in human subjects, and (2) to develop a mechanistic model for unbound and total paclitaxel pharmacokinetics. METHODS: A total of 35 patients (average +/- SD age: 59 +/-13 years) with advanced non-hematological malignancies were studied in a randomized two-way crossover trial. Patients received 175 mg/m(2) paclitaxel as 15 min (Tocosol Paclitaxel) or 3 h (Taxol) intravenous infusion in each study period. Paclitaxel concentrations were determined by LC-MS/MS in plasma ultrafiltrate and whole blood. NONMEM VI was used for population pharmacokinetics. RESULTS: A linear disposition model with three compartments for unbound paclitaxel and a one-compartment model for Cremophor were applied. Total clearance of unbound paclitaxel was 845 L/h (variability: 25% CV). The prolonged release with Tocosol Paclitaxel was explained by the limited solubility of unbound paclitaxel of 405 ng/mL (estimated) in plasma. The 15 min Tocosol Paclitaxel infusion yielded a mean time to 90% cumulative input of 1.14 +/- 0.16 h. Tocosol Paclitaxel was estimated to release 9.8% of the dose directly into the deep peripheral compartment. The model accounted for the presence of drug-containing nanodroplets in blood. CONCLUSIONS: Population pharmacokinetic analysis indicated linear disposition and a potentially higher bioavailability of unbound paclitaxel following Tocosol Paclitaxel administration due to direct release at the target site. The prolonged release of Tocosol Paclitaxel supports 15 min paclitaxel infusions. This mechanistic model may be important for development of prolonged release formulations that distribute in and from the systemic circulation.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacokinetics , Drug Delivery Systems/methods , Models, Biological , Nanoparticles , Neoplasms/drug therapy , Paclitaxel/pharmacokinetics , Adult , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/blood , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Chemistry, Pharmaceutical , Chromatography, Liquid , Cross-Over Studies , Female , Humans , Leukocyte Count , Linear Models , Male , Middle Aged , Monte Carlo Method , Paclitaxel/administration & dosage , Paclitaxel/blood , Paclitaxel/chemistry , Paclitaxel/therapeutic use , Structure-Activity Relationship , Tandem Mass Spectrometry , Tissue Distribution
6.
Antiviral Res ; 67(1): 1-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15890415

ABSTRACT

We report the activities of a novel nucleoside analog against HIV. This nucleoside (KP-1212) is not a chain terminator but exerts its antiviral effects via mutagenesis of the viral genome. Serial passaging of HIV in the presence of KP-1212 causes an increase in the mutation rate of the virus leading to viral ablation. HIV strains resistant to KP-1212 have not yet been isolated. Quite to the contrary, virus treated with KP-1212 exhibited an increased sensitivity not only to KP-1212 but also to another nucleoside reverse transcriptase inhibitor (NRTI), zidovudine. HIV strains resistant to other NRTIs (e.g. zidovudine, lamivudine, stavudine, abacavir, etc.) exhibited no cross-resistance towards KP-1212. Multiple assays confirmed that KP-1212 has a favorable (low) genotoxicity profile when compared to some approved antiviral nucleosides. In addition, KP-1212 is not toxic to mitochondria nor does it exhibit any inhibitory effects on mitochondrial DNA synthesis.


Subject(s)
Anti-HIV Agents , Azacitidine/analogs & derivatives , HIV Infections/drug therapy , HIV-1/drug effects , Mutation , Nucleosides/pharmacology , Animals , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/toxicity , Azacitidine/chemistry , Azacitidine/pharmacology , Azacitidine/toxicity , Cell Line , Cricetinae , HIV-1/genetics , HIV-1/growth & development , Humans , Microbial Sensitivity Tests , Nucleosides/chemistry , Nucleosides/therapeutic use , Nucleosides/toxicity , Reverse Transcriptase Inhibitors/pharmacology , Zidovudine/pharmacology
7.
Annu Rev Microbiol ; 58: 183-205, 2004.
Article in English | MEDLINE | ID: mdl-15487935

ABSTRACT

Riboviruses and retroviruses have the highest rates of mutations of any known organism. Increasing the mutation rate of these viruses could exceed the error threshold for viability of a viral population within a host. Recent experiments with mutagenic nucleoside analogs validate this new approach to treating infection of RNA viruses. Lethal mutagenesis with HIV-infected cells in culture has been documented and has been postulated to be the mechanism for treatment of hepatitis C with ribavirin. We consider the viral dynamics involved in the formation of a quasispecies, the choice of mutagenic nucleoside analogs, and the studies that have demonstrated the feasibility of lethal mutagenesis.


Subject(s)
Mutagenesis/genetics , Nucleosides/genetics , RNA Viruses/genetics , Antiviral Agents/pharmacology , HIV/genetics , HIV/metabolism , HIV Infections/drug therapy , Hepacivirus/genetics , Hepatitis C/drug therapy , Humans , Models, Genetic , Nucleosides/pharmacology , Ribavirin/therapeutic use
8.
BioDrugs ; 17(3): 169-77, 2003.
Article in English | MEDLINE | ID: mdl-12749753

ABSTRACT

Riboviruses and retroviruses have been shown to spontaneously mutate at an extraordinarily high rate. While this genetic diversity allows viral subpopulations to escape conventional antivirals, it also has a cost. Indeed, this high mutation rate results in the synthesis of many defective virions. Stealth nucleosides are nucleoside analogues that are designed to increase the already high spontaneous mutation rate of viruses to the point where the virus cannot further replicate, a process known as "lethal mutagenesis". Rather than causing chain termination and attempting to immediately halt viral replication, as with conventional nucleoside reverse transcriptase inhibitors (NRTI), stealth nucleosides are incorporated into the viral genome during replication and, by mispairing, cause mutations to the viral genome. These mutations affect all viral proteins and cumulatively, over a number of replication cycles, are lethal to the virus. There are two distinct stealth nucleoside platforms: DNA stealth nucleosides and RNA stealth nucleosides. DNA stealth nucleosides are currently being screened for activity against HIV and may have activity against hepatitis B virus and smallpox virus, with the clinical lead DNA stealth nucleoside demonstrating activity in the low nanomolar range. In addition, DNA stealth nucleosides have been shown to be able to effectively treat NRTI-resistant HIV strains in vitro, which is not surprising given that the two principal modes of resistance (low affinity of reverse transcriptase for a modified sugar or pyrophosphorolysis) should not be applicable to DNA stealth nucleosides. RNA stealth nucleosides are being developed for the treatment of ribovirus infections, and particularly hepatitis C virus infection. RNA stealth nucleosides are selected for their broad spectrum of antiviral activity, and current lead RNA stealth nucleosides have potency in the same range as ribavirin.


Subject(s)
Antiviral Agents/pharmacology , DNA Viruses/drug effects , Nucleosides/pharmacology , RNA Viruses/drug effects , Retroviridae/drug effects , Antiviral Agents/therapeutic use , DNA Viruses/genetics , DNA, Viral/genetics , Drug Resistance, Viral , Genome, Viral , HIV Infections/drug therapy , HIV Infections/virology , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Mutagenesis , Nucleosides/therapeutic use , RNA Viruses/genetics , RNA, Viral/genetics , Retroviridae/genetics , Smallpox/drug therapy , Smallpox/virology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...