Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 405(8): 2451-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23307134

ABSTRACT

Capillary electrophoresis (CE) with laser-induced native fluorescence (LINF) detection offers the ability to characterize low levels of selected analyte classes, depending on the excitation and emission wavelengths used. Here a new automated CE-LINF system that provides deep ultraviolet (DUV) excitation (224 nm) and variable emission wavelength detection was evaluated for the analysis of small molecule tryptophan- and tyrosine-related metabolites. The optimized instrument design includes several features that increase throughput, lower instrument cost and maintenance, and decrease complexity when compared with earlier systems using DUV excitation. Sensitivity is enhanced by using an ellipsoid detection cell to increase the fluorescence collection efficiency. The limits of detection ranged from 4 to 30 nmol/L for serotonin and tyrosine, respectively. The system demonstrated excellent linearity over several orders of magnitude of concentration and intraday precision from 1-11 % relative standard deviation (RSD). The instrument's performance was validated via tryptophan and serotonin characterization using tissue extracts from the mammalian brain stem, with RSDs of less than 10 % for both metabolites. The flexibility and sensitivity offered by DUV laser excitation and tunable emission enables a broad range of small-volume measurements.


Subject(s)
Automation/methods , Brain Stem/chemistry , Electrophoresis, Capillary/methods , Tryptophan/analysis , Tyrosine/analysis , Animals , Automation/instrumentation , Brain Stem/metabolism , Electrophoresis, Capillary/instrumentation , Rats , Rats, Sprague-Dawley , Spectrometry, Fluorescence/methods , Tryptophan/metabolism , Tyrosine/metabolism
2.
Eur J Neurosci ; 36(3): 2347-59, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22632453

ABSTRACT

In the central nervous system, serotonin, an important neurotransmitter and trophic factor, is synthesized by both mast cells and neurons. Mast cells, like other immune cells, are born in the bone marrow and migrate to many tissues. We show that they are resident in the mouse brain throughout development and adulthood. Measurements based on capillary electrophoresis with native fluorescence detection indicate that a significant contribution of serotonin to the hippocampal milieu is associated with mast cell activation. Compared with their littermates, mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have profound deficits in hippocampus-dependent spatial learning and memory and in hippocampal neurogenesis. These deficits are associated with a reduction in cell proliferation and in immature neurons in the dentate gyrus, but not in the subventricular zone - a neurogenic niche lacking mast cells. Chronic treatment with fluoxetine, a selective serotonin reuptake inhibitor, reverses the deficit in hippocampal neurogenesis in mast cell-deficient mice. In summary, the present study demonstrates that mast cells are a source of serotonin, that mast cell-deficient C57BL/6 Kit(W-sh/W-sh) mice have disrupted hippocampus-dependent behavior and neurogenesis, and that elevating serotonin in these mice, by treatment with fluoxetine, reverses these deficits. We conclude that mast cells contribute to behavioral and physiological functions of the hippocampus and note that they play a physiological role in neuroimmune interactions, even in the absence of inflammatory responses.


Subject(s)
Hippocampus/physiology , Mast Cells/metabolism , Neurons/cytology , Serotonin/metabolism , Animals , Cell Proliferation , Fluoxetine/pharmacology , Hippocampus/growth & development , Learning , Memory , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology
3.
Anal Chem ; 77(1): 215-24, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15623299

ABSTRACT

Nonlinear optical null ellipsometry (NONE) measurements of chiral interfaces allowed direct experimental measurement of the linear interfacial optical constants in surface second harmonic generation (SHG) measurements. Since phase information is retained in NONE measurements, the real and imaginary components of the interfacial refractive index (n and k, respectively) were uniquely obtained from the measured chiral chi((2)) tensor elements of a fluorescein-labeled bovine serum albumin film. The sensitivity of the calculated chi((2)) tensor elements on the assumed values of the interfacial optical constants allowed measurements of n and k to four significant figures with no additional adjustable parameters and independent of molecular symmetry. The optical constants measured by SHG agreed within a relative error of 0.8% with values predicted independently using a simple effective medium approximation, also with no adjustable parameters. Additionally, those same optical constants produced relationships between the achiral chi((2)) tensor elements in excellent agreement with predictions for systems exhibiting weak orientational order. This study suggests that the far-field intensity and polarization state of the nonlinear optical beam may be largely independent of the near-field optical constants within the interfacial layer in the limit of a film thickness much less than the wavelength of light.

SELECTION OF CITATIONS
SEARCH DETAIL
...