Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Res Sq ; 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36865279

ABSTRACT

Differentiated Primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.

2.
Sci Rep ; 13(1): 3925, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894564

ABSTRACT

We tested the hypothesis that (1) mucus production can be included in the cell response to iron deficiency; (2) mucus binds iron and increases cell metal uptake; and subsequently (3) mucus impacts the inflammatory response to particle exposure. Using quantitative PCR, RNA for both MUC5B and MUC5AC in normal human bronchial epithelial (NHBE) cells decreased following exposures to ferric ammonium citrate (FAC). Incubation of mucus-containing material collected from the apical surface of NHBE cells grown at air-liquid interface (NHBE-MUC) and a commercially available mucin from porcine stomach (PORC-MUC) with iron demonstrated an in vitro capacity to bind metal. Inclusion of either NHBE-MUC or PORC-MUC in incubations of both BEAS-2B cells and THP1 cells increased iron uptake. Exposure to sugar acids (N-acetyl neuraminic acid, sodium alginate, sodium guluronate, and sodium hyaluronate) similarly increased cell iron uptake. Finally, increased metal transport associated with mucus was associated with a decreased release of interleukin-6 and -8, an anti-inflammatory effect, following silica exposure. We conclude that mucus production can be involved in the response to a functional iron deficiency following particle exposure and mucus can bind metal, increase cell uptake to subsequently diminish or reverse a functional iron deficiency and inflammatory response following particle exposure.


Subject(s)
Iron Deficiencies , Iron , Humans , Iron/metabolism , Interleukin-6/metabolism , Epithelial Cells/metabolism , Mucus/metabolism , Mucin 5AC/metabolism
3.
Front Toxicol ; 5: 1264331, 2023.
Article in English | MEDLINE | ID: mdl-38464699

ABSTRACT

Differentiated primary human bronchial epithelial cell (dpHBEC) cultures grown under air-liquid interface (ALI) conditions exhibit key features of the human respiratory tract and are thus critical for respiratory research as well as efficacy and toxicity testing of inhaled substances (e.g., consumer products, industrial chemicals, and pharmaceuticals). Many inhalable substances (e.g., particles, aerosols, hydrophobic substances, reactive substances) have physiochemical properties that challenge their evaluation under ALI conditions in vitro. Evaluation of the effects of these methodologically challenging chemicals (MCCs) in vitro is typically conducted by "liquid application," involving the direct application of a solution containing the test substance to the apical, air-exposed surface of dpHBEC-ALI cultures. We report that the application of liquid to the apical surface of a dpHBEC-ALI co-culture model results in significant reprogramming of the dpHBEC transcriptome and biological pathway activity, alternative regulation of cellular signaling pathways, increased secretion of pro-inflammatory cytokines and growth factors, and decreased epithelial barrier integrity. Given the prevalence of liquid application in the delivery of test substances to ALI systems, understanding its effects provides critical infrastructure for the use of in vitro systems in respiratory research as well as in the safety and efficacy testing of inhalable substances.

4.
Cell Mol Bioeng ; 15(6): 571-585, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531860

ABSTRACT

Introduction: Under conditions of limited iron availability, plants and microbes have evolved mechanisms to acquire iron. For example, metal deficiency stimulates reprogramming of carbon metabolism, increasing activity of enzymes involved in the Krebs cycle and the glycolytic pathway. Resultant carboxylates/hydroxycarboxylates then function as ligands to complex iron and facilitate solubilization and uptake, reversing the metal deficiency. Similarly, human intestinal epithelial cells may produce lactate, a hydroxycarboxylate, during absolute and functional iron deficiency to import metal to reverse limited availability. Methods: Here we investigate (1) if lactate can increase cell metal import of epithelial cells in vitro, (2) if lactate dehydrogenase (LDH) activity in and lactate production by epithelial cells correspond to metal availability, and (3) if blood concentrations of LDH in a human cohort correlate with indices of iron homeostasis. Results: Results show that exposures of human epithelial cells, Caco-2, to both sodium lactate and ferric ammonium citrate (FAC) increase metal import relative to FAC alone. Similarly, fumaric, isocitric, malic, and succinic acid coincubation with FAC increase iron import relative to FAC alone. Increased iron import following exposures to sodium lactate and FAC elevated both ferritin and metal associated with mitochondria. LDH did not change after exposure to deferoxamine but decreased with 24 h exposure to FAC. Lactate levels revealed decreased levels with FAC incubation. Review of the National Health and Nutrition Examination Survey demonstrated significant negative relationships between LDH concentrations and serum iron in human cohorts. Conclusions: Therefore, we conclude that iron import in human epithelial cells can involve lactate, LDH activity can reflect the availability of this metal, and blood LDH concentrations can correlate with indices of iron homeostasis.

5.
Toxicol Sci ; 188(1): 88-107, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35426944

ABSTRACT

Inhalation is the most relevant route of volatile organic chemical (VOC) exposure; however, due to unique challenges posed by their chemical properties and poor solubility in aqueous solutions, in vitro chemical safety testing is predominantly performed using direct application dosing/submerged exposures. To address the difficulties in screening toxic effects of VOCs, our cell culture exposure system permits cells to be exposed to multiple concentrations at air-liquid interface (ALI) in a 24-well format. ALI exposure methods permit direct chemical-to-cell interaction with the test article at physiological conditions. In the present study, BEAS-2B and primary normal human bronchial epithelial cells (pHBEC) are used to assess gene expression, cytotoxicity, and cell viability responses to a variety of volatile chemicals including acrolein, formaldehyde, 1,3-butadiene, acetaldehyde, 1-bromopropane, carbon tetrachloride, dichloromethane, and trichloroethylene. BEAS-2B cells were exposed to all the test agents, whereas pHBECs were only exposed to the latter 4 listed above. The VOC concentrations tested elicited only slight cell viability changes in both cell types. Gene expression changes were analyzed using benchmark dose (BMD) modeling. The BMD for the most sensitive gene set was within one order of magnitude of the threshold-limit value reported by the American Conference of Governmental Industrial Hygienists, and the most sensitive gene sets impacted by exposure correlate to known adverse health effects recorded in epidemiologic and in vivo exposure studies. Overall, our study outlines a novel in vitro approach for evaluating molecular-based points-of-departure in human airway epithelial cell exposure to volatile chemicals.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Acetaldehyde , Benchmarking , Formaldehyde , Humans , Volatile Organic Compounds/analysis
6.
Inhal Toxicol ; 33(6-8): 268-274, 2021.
Article in English | MEDLINE | ID: mdl-34752160

ABSTRACT

OBJECTIVE: Several mechanisms have been proposed for the biological effect of diacetyl. We tested the postulate that animal and cell exposures to diacetyl are associated with a disruption in iron homeostasis. MATERIALS AND METHODS: Male, Sprague-Dawley rats were intratracheally-instilled with either distilled water or diacetyl. Seven days after treatment, animals were euthanized and the lungs removed, fixed, and embedded. Sections were cut and stained for iron, collagen, and ferritin. Human epithelial (BEAS-2B) and monocytic (THP-1) cells were exposed in vitro to ferric ammonium citrate (FAC), diacetyl, and both FAC and diacetyl. Cell non-heme iron concentrations and ferritin levels were quantified using inductively coupled plasma optical emission spectroscopy and an immunoassay respectively. RESULTS: After exposure of animals to diacetyl, there were airway polypoid lesions which stained positively for both iron and the intracellular storage protein ferritin. Trichrome stain showed a deposition of collagen immediately adjacent to accumulated metal following diacetyl exposure. In in vitro cell exposures, FAC increased non-heme iron concentration but co-incubations of FAC and diacetyl elevated levels to significantly greater values. Levels of ferritin were increased with exposures of BEAS-2B and THP-1 cells to FAC but were similarly greater after co-exposure with FAC and diacetyl. CONCLUSIONS: Results of animal and cell studies support a disruption of iron homeostasis by diacetyl. It is proposed that, following internalization, diacetyl complexes intracellular sources of iron. The cell recognizes a loss of its requisite iron to diacetyl and imports greater concentrations of the metal.


Subject(s)
Diacetyl/adverse effects , Animals , Homeostasis/drug effects , Humans , Iron/metabolism , Male , Rats , Rats, Sprague-Dawley , THP-1 Cells
7.
Toxicol Sci ; 185(1): 38-49, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34718810

ABSTRACT

Inhaled chemical/material exposures are a ubiquitous part of daily life around the world. There is a need to evaluate potential adverse effects of both single and repeat exposures for thousands of chemicals and an exponentially larger number of exposure scenarios (eg, repeated exposures). Meeting this challenge will require the development and use of in vitro new approach methodologies (NAMs); however, 2 major challenges face the deployment of NAMs in risk assessment are (1) characterizing what apical outcome(s) acute assays inform regarding the trajectory to long-term events, especially under repeated exposure conditions, and (2) capturing interindividual variability as it informs considerations of potentially susceptible and/or vulnerable populations. To address these questions, we used a primary human bronchial epithelial cell air-liquid interface model exposed to ozone (O3), a model oxidant and ubiquitous environmental chemical. Here we report that O3-induced proinflammatory gene induction is attenuated in repeated exposures thus demonstrating that single acute exposure outcomes do not reliably represent the trajectory of responses after repeated or chronic exposures. Further, we observed 10.1-, 10.3-, 14.2-, and 7-fold ranges of induction of interleukin (IL)-8, IL-6, heme oxygenase 1, and cyclooxygenase 2 transcripts, respectively, within in our population of 25 unique donors. Calculation of sample size estimates that indicated that 27, 24, 299, and 13 donors would be required to significantly power similar in vitro studies to identify a 2-fold change in IL-8, IL-6, HMOX1, and cyclooxygenase 2 transcript induction, respectively, to inform considerations of the uncertainty factors to reflect variability within the human population for in vitro studies.


Subject(s)
Ozone , Epithelial Cells , Gene Expression , Humans , Ozone/toxicity , Risk Assessment
8.
Toxicol Pathol ; 48(7): 887-898, 2020 10.
Article in English | MEDLINE | ID: mdl-32975498

ABSTRACT

Exposure to ambient ozone has been associated with increased human mortality. Ozone exposure can introduce oxygen-containing functional groups in particulate matter (PM) effecting a greater capacity of the particle for metal complexation and inflammatory effect. We tested the postulate that (1) a fulvic acid-like substance can be produced through a reaction of a carbonaceous particle with high concentrations of ozone and (2) such a fulvic acid-like substance included in the PM can initiate inflammatory effects following exposure of respiratory epithelial (BEAS-2B) cells and an animal model (male Wistar Kyoto rats). Carbon black (CB) was exposed for 72 hours to either filtered air (CB-Air) or approximately 100 ppm ozone (CB-O3). Carbon black exposure to high levels of ozone produced water-soluble, fluorescent organic material. Iron import by BEAS-2B cells at 4 and 24 hours was not induced by incubations with CB-Air but was increased following coexposures of CB-O3 with ferric ammonium citrate. In contrast to CB-Air, exposure of BEAS-2B cells and rats to CB-O3 for 24 hours increased expression of pro-inflammatory cytokines and lung injury, respectively. It is concluded that inflammatory effects of carbonaceous particles on cells can potentially result from (1) an inclusion of a fulvic acid-like substance after reaction with ozone and (2) changes in iron homeostasis following such exposure.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/toxicity , Animals , Benzopyrans , Humans , Male , Ozone/toxicity , Particulate Matter/toxicity , Rats , Soot/toxicity
9.
Free Radic Biol Med ; 151: 38-55, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32092410

ABSTRACT

Air pollutants cause changes in iron homeostasis through: 1) a capacity of the pollutant, or a metabolite(s), to complex/chelate iron from pivotal sites in the cell or 2) an ability of the pollutant to displace iron from pivotal sites in the cell. Through either pathway of disruption in iron homeostasis, metal previously employed in essential cell processes is sequestered after air pollutant exposure. An absolute or functional cell iron deficiency results. If enough iron is lost or is otherwise not available within the cell, cell death ensues. However, prior to death, exposed cells will attempt to reverse the loss of requisite metal. This response of the cell includes increased expression of metal importers (e.g. divalent metal transporter 1). Oxidant generation after exposure to air pollutants includes superoxide production which functions in ferrireduction necessary for cell iron import. Activation of kinases and phosphatases and transcription factors and increased release of pro-inflammatory mediators also result from a cell iron deficiency, absolute or functional, after exposure to air pollutants. Finally, air pollutant exposure culminates in the development of inflammation and fibrosis which is a tissue response to the iron deficiency challenging cell survival. Following the response of increased expression of importers and ferrireduction, activation of kinases and phosphatases and transcription factors, release of pro-inflammatory mediators, and inflammation and fibrosis, cell iron is altered, and a new metal homeostasis is established. This new metal homeostasis includes increased total iron concentrations in cells with metal now at levels sufficient to meet requirements for continued function.


Subject(s)
Air Pollutants , Air Pollutants/toxicity , Homeostasis , Iron , Iron Chelating Agents , Oxidants , Particulate Matter/toxicity
10.
Inhal Toxicol ; 30(4-5): 169-177, 2018.
Article in English | MEDLINE | ID: mdl-30086657

ABSTRACT

A cell culture exposure system (CCES) was developed to expose cells established at an air-liquid interface (ALI) to volatile chemicals. We characterized the CCES by exposing indigo dye-impregnated filter inserts inside culture wells to 125 ppb ozone (O3) for 1 h at flow rates of 5 and 25 mL/min/well; the reaction of O3 with an indigo dye produces a fluorescent product. A 5-fold increase in fluorescence at 25 mL/min/well versus 5 mL/min/well was observed, suggesting higher flows were more effective. We then exposed primary human bronchial epithelial cells (HBECs) to 0.3 ppm acrolein for 2 h at 3, 5, and 25 mL/min/well and compared our results against well-established in vitro exposure chambers at the U.S. EPA's Human Studies Facility (HSF Chambers). We measured transcript changes of heme oxygenase-1 (HMOX1) and interleukin-8 (IL-8), as well as lactate dehydrogenase (LDH) release, at 0, 1, and 24 h post-exposure. Comparing responses from HSF Chambers to the CCES, differences were only observed at 1 h post-exposure for HMOX1. Here, the HSF Chamber produced a ∼6-fold increase while the CCES at 3 and 5 mL/min/well produced a ∼1.7-fold increase. Operating the CCES at 25 mL/min/well produced a ∼4.5-fold increase; slightly lower than the HSF Chamber. Our biological results, supported by our comparison against the HSF Chambers, agree with our fluorescence results, suggesting that higher flows through the CCES are more effective at delivering volatile chemicals to cells. This new CCES will be deployed to screen the toxicity of volatile chemicals in EPA's chemical inventories.


Subject(s)
Acrolein/toxicity , Bronchi/drug effects , Epithelial Cells/drug effects , Toxicity Tests/methods , Volatile Organic Compounds/toxicity , Biomarkers/metabolism , Bronchi/metabolism , Bronchi/pathology , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/pathology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Inhalation Exposure , Interleukin-8/genetics , Interleukin-8/metabolism , L-Lactate Dehydrogenase/metabolism , Risk Assessment , Spectrometry, Fluorescence , Volatilization
11.
Sci Rep ; 8(1): 9398, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925859

ABSTRACT

Inter-individual variability is observed in all biological responses; however this variability is difficult to model and its underlying mechanisms are often poorly understood. This issue currently impedes understanding the health effects of the air pollutant ozone. Ozone produces pulmonary inflammation that is highly variable between individuals; but reproducible within a single individual, indicating undefined susceptibility factors. Studying inter-individual variability is difficult with common experimental models, thus we used primary human bronchial epithelial cells (phBECs) collected from many different donors. These cells were cultured, exposed to ozone, and the gene expression of the pro-inflammatory cytokine IL-8 was measured. Similar to in vivo observations, we found that ozone-mediated IL-8 expression was variable between donors, but reproducible within a given donor. Recent evidence suggests that the MAP kinases ERK1/2 and p38 mediate ozone-induced IL-8 transcription, thus we hypothesized that differences in their activation may control IL-8 inter-individual variability. We observed a significant correlation between ERK1/2 phosphorylation and IL-8 expression, suggesting that ERK1/2 modulates the ozone-mediated IL-8 response; however, we found that simultaneous inhibition of both kinases was required to achieve the greatest IL-8 inhibition. We proposed a "dimmer switch" model to explain how the coordinate activity of these kinases regulate differential IL-8 induction.


Subject(s)
Bronchi/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Interleukin-8/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Ozone/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Cells, Cultured , Humans , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/genetics
12.
Inhal Toxicol ; 28(14): 698-705, 2016 12.
Article in English | MEDLINE | ID: mdl-27884072

ABSTRACT

Functional groups on the surface of fibrous silicates can complex iron. We tested the postulate that (1) asbestos complexes and sequesters host cell iron resulting in a disruption of metal homeostasis and (2) this loss of essential metal results in an oxidative stress and biological effect in respiratory epithelial cells. Exposure of BEAS-2B cells to 50 µg/mL chrysotile resulted in diminished concentrations of mitochondrial iron. Preincubation of these cells with 200 µM ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss following the same exposure. The host response to chrysotile included increased expression of the importer divalent metal transporter-1 (DMT1) supporting a functional iron deficiency. Incubation of BEAS-2B cells with both 200 µM FAC and 50 µg/mL chrysotile was associated with a greater cell accumulation of iron relative to either iron or chrysotile alone reflecting increased import to correct metal deficiency immediately following fiber exposure. Cellular oxidant generation was elevated after chrysotile exposure and this signal was diminished by co-incubation with 200 µM FAC. Similarly, exposure of BEAS-2B cells to 50 µg/mL chrysotile was associated with release of the proinflammatory mediators interleukin (IL)-6 and IL-8, and these changes were diminished by co-incubation with 200 µM FAC. We conclude that (1) the biological response following exposure to chrysotile is associated with complexation and sequestration of cell iron and (2) increasing available iron in the cell diminished the effects of asbestos exposure.


Subject(s)
Asbestos, Serpentine/chemistry , Asbestos, Serpentine/toxicity , Iron/chemistry , Cell Line , Ferritins/metabolism , Homeostasis , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Iron/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Sulfates/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc/chemistry
13.
Biochim Biophys Acta ; 1860(12): 2816-25, 2016 12.
Article in English | MEDLINE | ID: mdl-27217087

ABSTRACT

BACKGROUND: The mechanism underlying biological effects, including pro-inflammatory outcomes, of particles deposited in the lung has not been defined. MAJOR CONCLUSIONS: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects. GENERAL SIGNIFICANCE: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation following exposure to disparate particles. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.


Subject(s)
Alveolar Epithelial Cells/drug effects , Homeostasis/drug effects , Iron Chelating Agents/chemistry , Iron/chemistry , Particulate Matter/chemistry , Air Pollution , Alveolar Epithelial Cells/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cells, Cultured , Ferric Compounds/pharmacology , Gene Expression Regulation/drug effects , Humans , Iron/metabolism , Iron Chelating Agents/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress , Particle Size , Particulate Matter/pharmacology , Protein Kinases/genetics , Protein Kinases/metabolism , Quaternary Ammonium Compounds/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Inhal Toxicol ; 28(8): 374-82, 2016 07.
Article in English | MEDLINE | ID: mdl-27206323

ABSTRACT

CONTEXT: NO2 and O3 are ubiquitous air toxicants capable of inducing lung damage to the respiratory epithelium. Due to their oxidizing capabilities, these pollutants have been proposed to target specific biological pathways, but few publications have compared the pathways activated. OBJECTIVE: This work will test the premise that NO2 and O3 induce toxicity by activating similar cellular pathways. METHODS: Primary human bronchial epithelial cells (HBECs, n = 3 donors) were exposed for 2 h at an air-liquid interface to 3 ppm NO2, 0.75 ppm O3, or filtered air and harvested 1 h post-exposure. To give an overview of pathways that may be influenced by each exposure, gene expression was measured using PCR arrays for toxicity and oxidative stress. Based on the results, genes were selected to quantify whether expression changes were changed in a dose- and time-response manner using NO2 (1, 2, 3, or 5 ppm), O3 (0.25, 0.50, 0.75, or 1.00 ppm), or filtered air and harvesting 0, 1, 4 and 24 h post-exposure. RESULTS: Using the arrays, genes related to oxidative stress were highly induced with NO2 while expression of pro-inflammatory and vascular function genes was found subsequent to O3. NO2 elicited the greatest HMOX1 response, whereas O3 more greatly induced IL-6, IL-8 and PTGS2 expression. Additionally, O3 elicited a greater response 1 h post-exposure and NO2 produced a maximal response after 4 h. CONCLUSION: We have demonstrated that these two oxidant gases stimulate differing mechanistic responses in vitro and these responses occur at dissimilar times.


Subject(s)
Air Pollutants/toxicity , Epithelial Cells/drug effects , Nitrogen Dioxide/toxicity , Ozone/toxicity , Adult , Bronchi/cytology , Cells, Cultured , Epithelial Cells/metabolism , Humans , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Transcriptome
15.
Toxicol Sci ; 150(1): 216-24, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26719369

ABSTRACT

Traditional toxicological paradigms have relied on factors such as age, genotype, and disease status to explain variability in responsiveness to toxicant exposure; however, these are neither sufficient to faithfully identify differentially responsive individuals nor are they modifiable factors that can be leveraged to mitigate the exposure effects. Unlike these factors, the epigenome is dynamic and shaped by an individual's environment. We sought to determine whether baseline levels of specific chromatin modifications correlated with the interindividual variability in their ozone (O3)-mediated induction in an air-liquid interface model using primary human bronchial epithelial cells from a panel of 11 donors. We characterized the relationship between the baseline abundance of 6 epigenetic markers with established roles as key regulators of gene expression-histone H3 lysine 4 trimethylation (H3K4me3), H3K27 acetylation (H3K27ac), pan-acetyl H4 (H4ac), histone H3K27 di/trimethylation (H3K27me2/3), unmodified H3, and 5-hydroxymethylcytosine (5-hmC)-and the variability in the O3-induced expression of IL-8, IL-6, COX2, and HMOX1. Baseline levels of H3K4me3, H3K27me2/3, and 5-hmC, but not H3K27ac, H4ac, and total H3, correlated with the interindividual variability in O3-mediated induction of HMOX1 and COX2. In contrast, none of the chromatin modifications that we examined correlated with the induction of IL-8 and IL-6. From these findings, we propose an "epigenetic seed and soil" model in which chromatin modification states between individuals differ in the relative abundance of specific modifications (the "soil") that govern how receptive the gene is to toxicant-mediated cellular signals (the "seed") and thus regulate the magnitude of exposure-related gene induction.


Subject(s)
Bronchi/drug effects , Chromatin/drug effects , Epithelial Cells/drug effects , Gene Expression/drug effects , Oxidative Stress/drug effects , Ozone/toxicity , Adolescent , Adult , Bronchi/cytology , Bronchi/immunology , Bronchi/metabolism , Cells, Cultured , Chromatin/genetics , Chromatin/immunology , Chromatin/metabolism , Chromatin Immunoprecipitation , Epithelial Cells/immunology , Epithelial Cells/metabolism , Female , Healthy Volunteers , Humans , Interleukin-6/genetics , Interleukin-8/genetics , Male , Oxidative Stress/genetics , Primary Cell Culture , Species Specificity , Young Adult
16.
Chem Res Toxicol ; 28(11): 2104-11, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26462088

ABSTRACT

The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We tested the postulate that (1) wood smoke particle (WSP) sequesters host cell iron resulting in a disruption of metal homeostasis, (2) this loss of essential metal results in both an oxidative stress and biological effect in respiratory epithelial cells, and (3) humic-like substances (HULIS), a component of WSP, have a capacity to appropriate cell iron and initiate a biological effect. BEAS-2B cells exposed to WSP resulted in diminished concentrations of mitochondrial (57)Fe, whereas preincubation with ferric ammonium citrate (FAC) prevented significant mitochondrial iron loss after such exposure. Cellular oxidant generation was increased after WSP exposure, but this signal was diminished by coincubation with FAC. Similarly, exposure of BEAS-2B cells to 100 µg/mL WSP activated mitogen-activated protein (MAP) kinases, elevated NF-E2-related factor 2/antioxidant responsive element (Nrf2 ARE) expression, and provoked interleukin (IL)-6 and IL-8 release, but all these changes were diminished by coincubation with FAC. The biological response to WSP was reproduced by exposure to 100 µg/mL humic acid, a polyphenol comparable to HULIS included in the WSP that complexes iron. We conclude that (1) the biological response following exposure to WSP is associated with sequestration of cell iron by the particle, (2) increasing available iron in the cell diminished the biological effects after particle exposure, and (3) HULIS included in WSP can sequester the metal initiating the cell response.


Subject(s)
Iron/metabolism , Smoke/adverse effects , Wood , Cell Line , Cell Nucleus/metabolism , Humans , Humic Substances , Interleukin-6/metabolism , Interleukin-8/metabolism , Mitochondria/metabolism , Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/genetics
17.
Inhal Toxicol ; 27(7): 335-41, 2015.
Article in English | MEDLINE | ID: mdl-26138312

ABSTRACT

The biological effect of particles on respiratory epithelial cells involves, in part, the generation of an oxidative stress and a consequent cascade of reactions culminating in inflammatory mediator release. Whether there is either an immediate, transitory activation or a persistent response of the cells to the particles has not been established. We tested the postulate that respiratory epithelial cells exposed to wood smoke particle (WSP) would demonstrate increased oxidative stress and mediator release following re-seeding and propagation of the cells for two generations post-initial exposure. BEAS-2B cells grown to confluence (G0) in 75 cm(2) flasks were treated for 18 h with the WSP at 0, 25, 50 and 100 µg/ml. The flasks were then used to seed another set of flasks as well as 12- and 96-well plates (G1). These flasks were similarly grown to confluence and the process repeated (G2). Cell viability was assayed using trypan blue dye exclusion and was >85%. Dichlorohydrofluorescein fluorescence after exposure of BEAS-2B cells to 50 and 100 µg/ml WSP increased in all three generations when expressed as a ratio to unexposed cells. Similarly, IL-6 and IL-8 release following the initial exposure of cells to 100 µg/ml WSP increased in all three generations when expressed as a ratio to unexposed cells. The persistence of oxidative stress and inflammatory mediator release for two generations of cells beyond the initial exposure supports a postulate of continued cell response to retained particle.


Subject(s)
Air Pollutants/adverse effects , Epithelial Cells/drug effects , Smoke/adverse effects , Wood , Bronchi/cytology , Cell Line , Cell Survival , Cyclooxygenase 2/genetics , Epithelial Cells/metabolism , Heme Oxygenase (Decyclizing)/genetics , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Iron/metabolism , RNA/metabolism , Superoxide Dismutase/genetics , Zinc/metabolism
18.
J Inorg Biochem ; 147: 126-33, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25843360

ABSTRACT

Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells exposed to vanadyl sulfate (VOSO4) showed a time- and dose-dependent increase in vanadium relative to PBS. HBE cells exposed to VOSO4 and then exposed to ferric ammonium citrate (FAC) significantly increased intracellular iron import supporting an interaction between the two metals. Following exposure to VOSO4, there was an increase (336±73%) in RNA for divalent metal transporter 1 (DMT1), a major iron importer. With inclusion of VOSO4 in the incubation, vanadium could be measured in the nuclear and mitochondrial fractions and the supernatant. Non-heme iron in the nuclear and mitochondrial fractions were decreased immediately following VOSO4 exposure while there was an increased concentration of non-heme iron in the supernatant. Provision of excess iron inhibited changes in the concentration of this metal provoked by VOSO4 exposures. Using Amplex Red, VOSO4 was shown to significantly increase oxidant generation by HBE cells in a time- and dose-dependent manner. HBE cells pre-treated with FAC and then exposed to VOSO4 demonstrated a decreased generation of oxidants. Similarly, activation of the transcription factor NF-ĸB promoter and release of interleukin-6 and -8 were increased following VOSO4 exposure and these effects were diminished by pre-treatment with FAC. We conclude that an initiating event in biological effect after exposure to vanadyl sulfate is a loss of requisite cell iron.


Subject(s)
Epithelial Cells/drug effects , Ferric Compounds/pharmacology , Quaternary Ammonium Compounds/pharmacology , Vanadium Compounds/pharmacology , Cells, Cultured , Humans
19.
Toxicol Sci ; 141(1): 198-205, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24928893

ABSTRACT

In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in vivo exposure of a living person. The goal of the present study was to compare the dose and effect of O3 in airway cells of humans exposed in vivo to that of human cells exposed in vitro. Ten subjects breathed labeled O3 ((18)O3, 0.3 ppm, 2 h) while exercising intermittently. Bronchial brush biopsies and lung lavage fluids were collected 1 h post exposure for in vivo data whereas in vitro data were obtained from primary cultures of human bronchial epithelial cells exposed to 0.25-1.0 ppm (18)O3 for 2 h. The O3 dose to the cells was defined as the level of (18)O incorporation and the O3 effect as the fold increase in expression of inflammatory marker genes (IL-8 and COX-2). Dose and effect in cells removed from in vivo exposed subjects were lower than in cells exposed to the same (18)O3 concentration in vitro suggesting upper airway O3 scrubbing in vivo. Cells collected by lavage as well as previous studies in monkeys show that cells deeper in the lung receive a higher O3 dose than cells in the bronchus. We conclude that the methods used herein show promise for replicating and comparing the in vivo dose and effect of O3 in an in vitro system.


Subject(s)
Air Pollutants/toxicity , Bronchi/drug effects , Epithelial Cells/drug effects , Ozone/toxicity , Adult , Bronchi/cytology , Bronchi/immunology , Bronchoalveolar Lavage Fluid/cytology , Bronchoscopy , Cells, Cultured , Cyclooxygenase 2/genetics , Dose-Response Relationship, Drug , Epithelial Cells/immunology , Female , Gene Expression/drug effects , Humans , Interleukin-8/genetics , Male , Oxygen Isotopes , Risk Assessment , Young Adult
20.
Inhal Toxicol ; 26(7): 391-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24862973

ABSTRACT

CONTEXT: Ozone (O3) exposure is associated with a disruption of iron homeostasis and increased availability of this metal which potentially contributes to an oxidative stress and biological effects. OBJECTIVE: We tested the postulate that increased concentrations of iron in cells, an animal model and human subjects would significantly impact the biological effects of O3 exposure. RESULTS: Exposure to 0.4 ppm O3 for 5 h increased mRNA for both Superoxide Dismutase-1 (SOD1) and Cyclooxygenase-2 (COX2) in normal human bronchial epithelial (NHBE) cells. Pre-treatment of NHBE cells with 200 µM ferric ammonium citrate (FAC) for 4 h diminished changes in both SOD1 and COX2 following O3 exposure. mRNA transcript levels and associated protein release of the pro-inflammatory mediators IL-6 and IL-8 were increased by O3 exposure of NHBE cells; changes in these endpoints after O3 exposure were significantly decreased by FAC pre-treatment of the cells. Exposure of CD-1 mice to 2 ppm O3 for 3 h significantly increased lavage indices of inflammation and airflow limitation. Pre-treatment of the animals with pharyngeal aspiration of FAC diminished the same endpoints. Finally, the mean loss of pulmonary function in 19 healthy volunteers exposed to 0.3 ppm O3 for 2 h demonstrated significant correlations with either their pre-exposure plasma ferritin or iron concentrations. DISCUSSION AND CONCLUSION: We conclude that greater availability of iron after O3 exposure does not augment biological effects. On the contrary, increased available iron decreases the biological effects of O3 exposure in cells, animals and humans.


Subject(s)
Antidotes/therapeutic use , Bronchi/drug effects , Ferric Compounds/therapeutic use , Inhalation Exposure , Ozone/antagonists & inhibitors , Pneumonia/prevention & control , Quaternary Ammonium Compounds/therapeutic use , Respiratory Mucosa/drug effects , Adult , Air Pollutants/chemistry , Air Pollutants/toxicity , Animals , Animals, Outbred Strains , Antidotes/administration & dosage , Antidotes/adverse effects , Antidotes/pharmacology , Bronchi/cytology , Bronchi/immunology , Bronchi/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Female , Ferric Compounds/administration & dosage , Ferric Compounds/adverse effects , Ferric Compounds/pharmacology , Ferritins/blood , Ferritins/metabolism , Humans , Inhalation Exposure/adverse effects , Iron/analysis , Iron/blood , Male , Mice , Nutritional Status , Oxidants, Photochemical/chemistry , Oxidants, Photochemical/toxicity , Ozone/toxicity , Pneumonia/blood , Pneumonia/immunology , Pneumonia/metabolism , Quaternary Ammonium Compounds/administration & dosage , Quaternary Ammonium Compounds/adverse effects , Quaternary Ammonium Compounds/pharmacology , Respiratory Function Tests , Respiratory Mucosa/cytology , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...