Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 7(2): 727-751, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38166376

ABSTRACT

The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.


Subject(s)
Nanostructures , Humans , Nanostructures/toxicity , Nanostructures/chemistry , Macrophages , Inflammation , Immunity , Immunomodulation
2.
Sci Total Environ ; 854: 158771, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36108853

ABSTRACT

Nanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively. Additionally, within the natural environment, nanozymes can be employed for the degradation of organic and persistent pollutants such as antibiotics, phenols, and textile dyes. Further, the potential sphere of applications for nanozymes traverses from indoor air purification to anti-biofouling agents, and even they show promise in combatting pathogenic bacteria. However, nanozymes may have inherent toxicity, which can restrict their widespread utility. Thus, it is important to evaluate and monitor the interaction and transformation of nanozymes towards biosphere damage when employed within the natural environment in a cradle-to-grave manner, to assure their utmost safety. In this context, various studies have concluded that the green synthesis of nanozymes can efficiently overcome the toxicity limitations in real life applications, and nanozymes can be well utilized in the sensing and degradation of several toxic pollutants including metal ions, pesticides, and chemical warfare agents. In this seminal review, we have explored the great potential of nanozymes, whilst addressing a range of concerns, which have often been overlooked and currently restrict widespread applications and commercialization of nanozymes.


Subject(s)
Environmental Pollutants , Nanostructures , Nanostructures/chemistry , Metals/chemistry , Catalysis , Ions
3.
PLoS One ; 17(10): e0276296, 2022.
Article in English | MEDLINE | ID: mdl-36269783

ABSTRACT

Infection, trauma, and autoimmunity trigger tissue inflammation, often leading to pain and loss of function. Therefore, approaches to control inflammation based on nanotechnology principles are being developed in addition to available methods. The metal-based nanoparticles are particularly attractive due to the ease of synthesis, control over physicochemical properties, and facile surface modification with different types of molecules. Here, we report curcumin conjugated silver (Cur-Ag) nanoparticles synthesis, followed by their surface functionalization with isoniazid, tyrosine, and quercetin, leading to Cur-AgINH, Cur-AgTyr, and Cur-AgQrc nanoparticles, respectively. These nanoparticles possess radical scavenging capacity, haemocompatibility, and minimal cytotoxicity to macrophages. Furthermore, the nanoparticles inhibited the secretion of pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interleukin-1ß from macrophages stimulated by lipopolysaccharide (LPS). The findings reveal that the careful design of surface corona of nanoparticles could be critical to increasing their efficacy in biomedical applications.


Subject(s)
Curcumin , Metal Nanoparticles , Nanoparticles , Humans , Silver/pharmacology , Silver/chemistry , Curcumin/pharmacology , Lipopolysaccharides , Metal Nanoparticles/chemistry , Interleukin-1beta , Interleukin-6 , Tumor Necrosis Factor-alpha , Quercetin/pharmacology , Isoniazid , Nanoparticles/chemistry , Cytokines/metabolism , Inflammation , Homeostasis , Tyrosine
4.
Nano Converg ; 9(1): 21, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35569081

ABSTRACT

Innovations in nanomedicine has guided the improved outcomes for cancer diagnosis and therapy. However, frequent use of nanomaterials remains challenging due to specific limitations like non-targeted distribution causing low signal-to-noise ratio for diagnostics, complex fabrication, reduced-biocompatibility, decreased photostability, and systemic toxicity of nanomaterials within the body. Thus, better nanomaterial-systems with controlled physicochemical and biological properties, form the need of the hour. In this context, smart nanomaterials serve as promising solution, as they can be activated under specific exogenous or endogenous stimuli such as pH, temperature, enzymes, or a particular biological molecule. The properties of smart nanomaterials make them ideal candidates for various applications like biosensors, controlled drug release, and treatment of various diseases. Recently, smart nanomaterial-based cancer theranostic approaches have been developed, and they are displaying better selectivity and sensitivity with reduced side-effects in comparison to conventional methods. In cancer therapy, the smart nanomaterials-system only activates in response to tumor microenvironment (TME) and remains in deactivated state in normal cells, which further reduces the side-effects and systemic toxicities. Thus, the present review aims to describe the stimulus-based classification of smart nanomaterials, tumor microenvironment-responsive behaviour, and their up-to-date applications in cancer theranostics. Besides, present review addresses the development of various smart nanomaterials and their advantages for diagnosing and treating cancer. Here, we also discuss about the drug targeting and sustained drug release from nanocarriers, and different types of nanomaterials which have been engineered for this intent. Additionally, the present challenges and prospects of nanomaterials in effective cancer diagnosis and therapeutics have been discussed.

5.
Langmuir ; 38(5): 1877-1887, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35099982

ABSTRACT

The smart design of nanoparticles with varying surfaces may open a new avenue for potential biomedical applications. Consequently, several approaches have been established for controlled synthesis to develop the unique physicochemical properties of nanoparticles. However, many of the synthesis and functionalization methods are chemical-based and might be toxic to limit the full potential of nanoparticles. Here, curcumin (a plant-derived material) based synthesis of gold (Au) nanoparticles, followed by the development of a suitable exterior corona using isoniazid (INH, antibiotic), tyrosine (Tyr, amino acid), and quercetin (Qrc, antioxidant), is reported. All these nanoparticles (Cur-Au, Cur-AuINH, Cur-AuTyr, and Cur-AuQrc) possess inherent peroxidase-mimicking natures depending on the surface corona of respective nanoparticles, and they are found to be excellent candidates for free radical scavenging action. The peroxidase-mimicking nanoparticle interactions with red blood cells and mouse macrophages confirmed their hemo- and biocompatible nature. Moreover, these surface-engineered Au nanoparticles were found to be suitable in subsiding key pro-inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß). The inherent peroxidase-mimicking behavior and anti-inflammatory potential without any significant toxicity of these nanoparticles may open new prospects for nanomedicine.


Subject(s)
Curcumin , Metal Nanoparticles , Nanoparticles , Animals , Gold/chemistry , Gold/toxicity , Inflammation/chemically induced , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Mice , Nanoparticles/chemistry , Nanoparticles/toxicity , Peroxidase , Peroxidases
7.
Sci Rep ; 10(1): 19713, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184324

ABSTRACT

The successful integration of nanoparticles into biomedical applications requires modulation of their surface properties so that the interaction with biological systems is regulated to minimize toxicity for biological function. In the present work, we have engineered bioactive surfaces on gold (Au) and silver (Ag) nanoparticles and subsequently evaluated their interaction with mouse skin fibroblasts and macrophages. The Au and Ag nanoparticles were synthesized using tyrosine, tryptophan, isonicotinylhydrazide, epigallocatechin gallate, and curcumin as reducing and stabilizing agents. The nanoparticles thus prepared showed surface corona and exhibited free radical scavenging and enzyme activities with limited cytotoxicity and genotoxicity. We have thus developed avenues for engineering the surface of nanoparticles for biological applications.


Subject(s)
DNA Damage , Fibroblasts/cytology , Free Radical Scavengers/pharmacology , Gold/chemistry , Macrophages/cytology , Metal Nanoparticles/administration & dosage , Silver/chemistry , Animals , Cell Survival , Cells, Cultured , Fibroblasts/drug effects , Macrophages/drug effects , Metal Nanoparticles/chemistry , Mice , Peroxidase/metabolism , Surface Properties
8.
Front Chem ; 8: 778, 2020.
Article in English | MEDLINE | ID: mdl-33195020

ABSTRACT

Zinc oxide (ZnO) nanoparticles have attracted significant interest in a number of applications ranging from electronics to biomedical sciences due to their large exaction binding energy (60 meV) and wide bandgap of 3.37 eV. In the present study, we report the low-cost bacterium based "eco-friendly" efficient synthesis of ZnO nanoparticles by using the zinc-tolerant bacteria Serratia nematodiphila. The physicochemical characterization of ZnO nanoparticles was performed by employing UV-vis spectroscopy, XRD, TEM, DLS, Zeta potential, and Raman spectroscopy. The antimicrobial and antifungal studies were investigated at different concentrations using the agar well-diffusion method, whereby the microbial growth rate decreases with the increase in nanoparticle concentration. Further, photocatalytic performance studies were conducted by taking methyl orange (MO) as a reference dye.

9.
Colloids Surf B Biointerfaces ; 194: 111211, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32615521

ABSTRACT

Green synthesis of metal-encased nutraceutical nano-hybrids has been a target for research over the last few years. In the present investigation, we have reported temperature dependent facile synthesis of silver nanoparticles using FDA approved c phycocyanin (cPC). The cPC conjugated silver nanoparticles (AgcPCNPs) were characterized by TEM, Zeta Potential, UV-vis, XPS, FTIR, and CD Spectroscopy. The temperature optimization studies suggested the synthesis of stable AgcPCNPs at 40 °C while at higher temperature system shows aggregated appearance. Molecular docking studies predicted the exclusive interaction of C, D, I, and J chains of cPC with the surface of AgNPs. Moreover, AgcPCNPs significantly (p < 0.1 %) counteract the toxic nature of AgNPs on red blood cell by measuring parameters like total RBC count, % hemolysis, % hematocrit, coagulation time, pH, electrolyte concentrations and degree of blood cell lipid peroxidation by the anti-oxidation mechanism. Skin fibroblast in vitro cell migration result suggeststhat AgcPCNPs enhanced the degree of cell movement towards the wound area. Data obtained collectively demonstrate that AgcPCNPs can be a better agent in the dermal wound healing with reduced toxicity with the bi-phasic advantage of cPC as a wound healer and Ag nano-metal as an anti-bacterial agent.


Subject(s)
Metal Nanoparticles , Silver , Animals , Anti-Bacterial Agents , Erythrocytes , Molecular Docking Simulation , Phycocyanin/pharmacology , Plant Extracts , Sheep
10.
Colloids Surf B Biointerfaces ; 184: 110522, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31586898

ABSTRACT

With the rapidly approaching post-antibiotic era, new and effective combinations of antibiotics are imperative to combat multiple drug resistance (MDR). We have synthesized multimodal antimicrobials that integrate the antibiotic isonicotinylhydrazide (INH), silver nanoparticles (AgNPsINH), and two different polyoxometalates (POMs) namely, phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) to prepare AgNPsINH@PTA and AgNPsINH@PMA, respectively. AgNPsINH have peroxidase-like (nanozyme) activity and very high antibacterial potential toward S. aureus, which was further enhanced upon modification with POMs. The selectivity of these functional nanozymes was evaluated with m5S mouse fibroblasts using WST-8, LDH viability, in vitro reactive oxygen species (ROS) generation assays, and crystal violet morphological studies. These investigations showed very low cytotoxicity for the nanoparticles compared to free metal ions (Ag+), pristine POMs and INH, demonstrating the ability of multifunctional materials to provide efficient and selective antimicrobials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Isoniazid/pharmacology , Metal Nanoparticles/chemistry , Silver/pharmacology , Staphylococcus aureus/drug effects , Tungsten Compounds/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Isoniazid/chemistry , Mice , Microbial Sensitivity Tests , Molecular Structure , Particle Size , Silver/chemistry , Surface Properties , Tungsten Compounds/chemistry
11.
Nano Converg ; 6(1): 23, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31304563

ABSTRACT

Nanotechnology has the potential to circumvent several drawbacks of conventional therapeutic formulations. In fact, significant strides have been made towards the application of engineered nanomaterials for the treatment of cancer with high specificity, sensitivity and efficacy. Tailor-made nanomaterials functionalized with specific ligands can target cancer cells in a predictable manner and deliver encapsulated payloads effectively. Moreover, nanomaterials can also be designed for increased drug loading, improved half-life in the body, controlled release, and selective distribution by modifying their composition, size, morphology, and surface chemistry. To date, polymeric nanomaterials, metallic nanoparticles, carbon-based materials, liposomes, and dendrimers have been developed as smart drug delivery systems for cancer treatment, demonstrating enhanced pharmacokinetic and pharmacodynamic profiles over conventional formulations due to their nanoscale size and unique physicochemical characteristics. The data present in the literature suggest that nanotechnology will provide next-generation platforms for cancer management and anticancer therapy. Therefore, in this critical review, we summarize a range of nanomaterials which are currently being employed for anticancer therapies and discuss the fundamental role of their physicochemical properties in cancer management. We further elaborate on the topical progress made to date toward nanomaterial engineering for cancer therapy, including current strategies for drug targeting and release for efficient cancer administration. We also discuss issues of nanotoxicity, which is an often-neglected feature of nanotechnology. Finally, we attempt to summarize the current challenges in nanotherapeutics and provide an outlook on the future of this important field.

12.
Mater Sci Eng C Mater Biol Appl ; 96: 286-294, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30606534

ABSTRACT

Manufacturing nanoparticles with controlled physicochemical properties using environment-friendly routes have potential to open new prospects for a variety of applications. Accordingly, several approaches have been established for manufacturing metal nanoparticles. Many of these approaches entail the use of hazardous chemicals and could be toxic to the environment, and cannot be used readily for biomedical applications. In the present work, we report a single step bio-friendly approach to formulate gold (Au), silver (Ag), and Au-Ag alloy nanoparticles with desired surface corona and composition using isonicotinylhydrazide (INH) as a reducing agent. INH also functioned as a stabilizing agent by enabling a surface corona around the nanoparticles. Remarkably, within a single step INH could also provide a handle in regulating the composition of Au and Ag in bimetallic systems without any additional chemical modification. The physicochemical and surface properties of the different nanoparticles thus obtained have been examined by analytical, spectroscopic and microscopic techniques. Cell cytotoxicity (release of lactate dehydrogenase), cell viability and intracellular reactive oxygen species (ROS) assays confirmed that the Au, Ag, and Au-Ag bimetallic nanoparticles prepared with INH are biocompatible. Finally, the presence of organic surface corona of INH on the nanoparticles was found to impart nanozyme activity and antimycobacterial sensitivity to the nanoparticles.


Subject(s)
Alloys/chemistry , Fibroblasts/metabolism , Gold/chemistry , Hydrazines/chemistry , Materials Testing , Metal Nanoparticles/chemistry , Silver/chemistry , Animals , Cells, Cultured , Fibroblasts/cytology , Mice , Oxidation-Reduction
13.
Nano Converg ; 3(1): 1, 2016.
Article in English | MEDLINE | ID: mdl-28191411

ABSTRACT

Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

14.
Amino Acids ; 47(12): 2551-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26193769

ABSTRACT

Here, we have strategically synthesized stable gold (AuNPs(Tyr), AuNPs(Trp)) and silver (AgNPs(Tyr)) nanoparticles which are surface functionalized with either tyrosine or tryptophan residues and have examined their potential to inhibit amyloid aggregation of insulin. Inhibition of both spontaneous and seed-induced aggregation of insulin was observed in the presence of AuNPs(Tyr), AgNPs(Tyr), and AuNPs(Trp) nanoparticles. These nanoparticles also triggered the disassembly of insulin amyloid fibrils. Surface functionalization of amino acids appears to be important for the inhibition effect since isolated tryptophan and tyrosine molecules did not prevent insulin aggregation. Bioinformatics analysis predicts involvement of tyrosine in H-bonding interactions mediated by its C=O, -NH2, and aromatic moiety. These results offer significant opportunities for developing nanoparticle-based therapeutics against diseases related to protein aggregation.


Subject(s)
Amyloid/chemistry , Gold/chemistry , Insulin Antagonists/chemistry , Insulin/chemistry , Metal Nanoparticles/chemistry , Tryptophan/chemistry , Tyrosine/chemistry , Amino Acids/chemistry , Animals , Cattle , Computational Biology , Hydrogen Bonding , Microscopy, Electron, Transmission , Molecular Docking Simulation , Protein Binding , Protein Conformation , Silver/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
15.
Chem Commun (Camb) ; 50(100): 15856-9, 2014 Dec 28.
Article in English | MEDLINE | ID: mdl-25331713

ABSTRACT

A new ultrafast and highly sensitive 'turn-off/turn-on' biosensing approach that combines the intrinsic peroxidase-like activity of gold nanoparticles (GNPs) with the high affinity and specificity of a ssDNA aptamer is presented for the efficient detection of a model small molecule kanamycin.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Gold/chemistry , Kanamycin/analysis , Metal Nanoparticles/chemistry , DNA, Single-Stranded/chemistry , Peroxidase/chemistry , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...