Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1096614, 2023.
Article in English | MEDLINE | ID: mdl-37025487

ABSTRACT

Glioma is the most devastating high-grade tumor of the central nervous system, with dismal prognosis. Existing treatment modality does not provide substantial benefit to patients and demands novel strategies. One of the first-line treatments for glioma, temozolomide, provides marginal benefit to glioma patients. Repurposing of existing non-cancer drugs to treat oncology patients is gaining momentum in recent years. In this study, we investigated the therapeutic benefits of combining three repurposed drugs, namely, metformin (anti-diabetic) and epigallocatechin gallate (green tea-derived antioxidant) together with temozolomide in a glioma-induced xenograft rat model. Our triple-drug combination therapy significantly inhibited tumor growth in vivo and increased the survival rate (50%) of rats when compared with individual or dual treatments. Molecular and cellular analyses revealed that our triple-drug cocktail treatment inhibited glioma tumor growth in rat model through ROS-mediated inactivation of PI3K/AKT/mTOR pathway, arrest of the cell cycle at G1 phase and induction of molecular mechanisms of caspases-dependent apoptosis.In addition, the docking analysis and quantum mechanics studies performed here hypothesize that the effect of triple-drug combination could have been attributed by their difference in molecular interactions, that maybe due to varying electrostatic potential. Thus, repurposing metformin and epigallocatechin gallate and concurrent administration with temozolomide would serve as a prospective therapy in glioma patients.

3.
Cell Signal ; 95: 110350, 2022 07.
Article in English | MEDLINE | ID: mdl-35525406

ABSTRACT

Glioblastoma multiforme is one of the calamitous primary glial brain tumors with extensive heterogeneity at cellular and molecular levels. While maximal surgical resection trailed by radio and chemotherapy employing temozolomide remains the gold-standard treatment for malignant glioma patients, the overall prognosis remains dismal and there exists an unmet need for effective therapeutic strategies. In this context, we hypothesize that proper understanding of signaling pathways responsible for glioblastoma multiforme proliferation would be the first trump card while searching for novel targeted therapies. Among the pathways aberrantly activated, PI3K/AKT/mTOR is the most significant pathway, that is clinically implicated in malignancies such as high-grade glioma. Further, the WNT/ß-Catenin cascade is well-implicated in several malignancies, while its role in regulating glioma pathogenesis has only emerged recently. Nevertheless, oncogenic activation of both these pathways is a frequent event in malignant glioma that facilitates tumor proliferation, stemness and chemo-resistance. Recently, it has been reported that the cross-talk of PI3K/AKT/mTOR pathway with multiple signaling pathways could promote glioma progression and reduce the sensitivity of glioma cells to the standard therapy. However, very few studies had focused on the relationship between PI3K/AKT/mTOR and WNT/ß-Catenin pathways in glioblastoma multiforme. Interestingly, in homeostatic and pathologic circumstances, both these pathways depict fine modulation and are connected at multiple levels by upstream and downstream effectors. Thus, gaining deep insights on the collusion between these pathways would help in discovering unique therapeutic targets for glioblastoma multiforme management. Hence, the current review aims to address, "the importance of inter-play between PI3K/AKT/mTOR and WNT/ß-Catenin pathways", and put forward, "the possibility of combinatorially targeting them", for glioblastoma multiforme treatment enhancement.


Subject(s)
Brain Neoplasms , Glioblastoma , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Combined Modality Therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
4.
Life Sci ; 301: 120609, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35526592

ABSTRACT

AIMS: Malignant gliomas constitute one of the deadly brain tumors with high degeneration rate. Though temozolomide (TMZ) is the first-line drug for glioma, its efficacy has decreased due to chemo-resistance. Repurposing synthetic and natural compounds have gained increasing interest in glioma. Hence, we combined chloroquine (CHL) a synthetic drug, naringenin (NAR) and phloroglucinol (PGL) (natural derivatives), to investigate whether the apoptotic effect of these drugs both alone and in combination, enhances the anti-tumor effects of TMZ in an in vitro and in vivo orthotopic xenograft glioma model. MAIN METHODS: The cytotoxic effect of the drugs was assessed in C6 (murine) glioma cells, U-87 MG and LN229 (human) glioblastoma cells, primary astrocytes (isolated from rat brain tissues) and HEK-293 T cells. Mitochondrial depolarization and alterations in the cell cycle was determined by confocal imaging and flow cytometry. The expression of angiogenic and apoptotic markers was evaluated using qRT-PCR and ELISA. The efficacy of the combinatorial treatment was assessed in an orthotopic xenograft model using U-87 MG cells. KEY FINDINGS: The combinatorial treatment inhibited cell proliferation, induced apoptosis and contributed to cell cycle arrest in glioma cells. The quadruple combinatorial cocktail down-regulated BCL-2 with a concomitant decrease in VEGF. As observed in vitro, the quadruple combinatorial treatment enhanced the median survival of glioma-induced rats with lower cellularity rate. SIGNIFICANCE: The combination of CHL, NAR and PGL synergistically potentiated the efficacy of TMZ on glioma in vitro and in vivo. Hence, this combination may characterize an advanced strategy for glioma treatment, thereby providing a possible translation to clinical trial.


Subject(s)
Brain Neoplasms , Glioma , Animals , Antineoplastic Agents, Alkylating/pharmacology , Apoptosis , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/pathology , HEK293 Cells , Humans , Mice , Rats , Temozolomide/pharmacology , Xenograft Model Antitumor Assays
5.
Med Oncol ; 38(5): 53, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33811540

ABSTRACT

Gliomas are one of the most devastating primary brain tumors which impose significant management challenges to the clinicians. The aggressive behaviour of gliomas is mainly attributed to their rapid proliferation, unravelled genomics and the blood-brain barrier which protects the tumor cells from chemotherapeutic regimens. Suspects of brain tumors are usually assessed by magnetic resonance imaging and computed tomography. These images allow surgeons to decide on the tumor grading, intra-operative pathology, feasibility of surgery, and treatment planning. All these data are compiled manually by physicians, wherein it takes time for the validation of results and concluding the treatment modality. In this context, the arrival of artificial intelligence in this era of personalized medicine, has proven promising performance in the diagnosis and management of gliomas. Starting from grading prediction till outcome evaluation, artificial intelligence-based forefronts have revolutionized oncological research. Interestingly, this approach has also been able to precisely differentiate tumor lesion from healthy tissues. However, till date, their utility in neuro-oncological field remains limited due to the issues pertaining to their reliability and transparency. Hence, to shed novel insights on the "clinical utility of this novel approach on glioma management" and to reveal "the black-boxes that have to be solved for fruitful application of artificial intelligence in neuro-oncology research", we provide in this review, a succinct description of the potential gear of artificial intelligence-based avenues in glioma treatment and the barriers that impede their rapid implementation in neuro-oncology.


Subject(s)
Artificial Intelligence/trends , Brain Neoplasms/therapy , Glioma/therapy , Intelligence , Medical Oncology/trends , Algorithms , Brain Neoplasms/diagnosis , Glioma/diagnosis , Humans , Medical Oncology/methods , Neoplasm Grading/methods , Neoplasm Grading/trends
6.
Mol Biotechnol ; 63(2): 93-108, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33386579

ABSTRACT

Genome editing employs targeted nucleases as powerful tools to precisely alter the genome of target cells and regulate functional genes. Various strategies have been risen so far as the molecular scissors-mediated genome editing that includes zinc finger nuclease, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats-CRISPR-related protein 9. These tools allow researchers to understand the basics of manipulating the genome, create animal models to study human diseases, understand host-pathogen interactions and design disease targets. Targeted genome modification utilizing RNA-guided nucleases are of recent curiosity, as it is a fast and effective strategy that enables the researchers to manipulate the gene of interest, carry out functional studies, understand the molecular basis of the disease and design targeted therapies. CRISPR-Cas9, a bacterial defense system employed against viruses, consists of a single-strand RNA-guided Cas9 nuclease connected to the corresponding complementary target sequence. This powerful and versatile tool has gained tremendous attention among the researchers, owing to its ability to correct genetic disorders. To help illustrate the potential of this gene editor in unexplored corners of oncology, we describe the history of CRISPR-Cas9, its rapid progression in cancer research as well as future perspectives.


Subject(s)
CRISPR-Cas Systems/genetics , Neoplasms/therapy , Adaptive Immunity , Animals , Biomedical Research , Disease Models, Animal , Humans , Neoplasms/diagnosis , Neoplasms/immunology , T-Lymphocytes/immunology
7.
Cell Biol Int ; 45(1): 18-53, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33049091

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most common and malignant form of adult brain tumor with a high mortality rate and dismal prognosis. The present standard treatment comprising surgical resection followed by radiation and chemotherapy using temozolomide can broaden patient's survival to some extent. However, the advantages are not palliative due to the development of resistance to the drug and tumor recurrence following the multimodal treatment approaches due to both intra- and intertumoral heterogeneity of GBM. One of the major contributors to temozolomide resistance is O6 -methylguanine-DNA methyltransferase. Furthermore, deficiency of mismatch repair, base excision repair, and cytoprotective autophagy adds to temozolomide obstruction. Rising proof additionally showed that a small population of cells displaying certain stem cell markers, known as glioma stem cells, adds on to the resistance and tumor progression. Collectively, these findings necessitate the discovery of novel therapeutic avenues for treating glioblastoma. As of late, after understanding the pathophysiology and biology of GBM, some novel therapeutic discoveries, such as drug repurposing, targeted molecules, immunotherapies, antimitotic therapies, and microRNAs, have been developed as new potential treatments for glioblastoma. To help illustrate, "what are the mechanisms of resistance to temozolomide" and "what kind of alternative therapeutics can be suggested" with this fatal disease, a detailed history of these has been discussed in this review article, all with a hope to develop an effective treatment strategy for GBM.


Subject(s)
Glioblastoma/therapy , Animals , Drug Repositioning , Glioblastoma/pathology , Humans , Immunotherapy , Models, Biological , Molecular Targeted Therapy , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...