Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 156(1): 014704, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998359

ABSTRACT

Using non-equilibrium molecular dynamics simulations, we demonstrate the effect of concentration and alkali cation types (K+, Na+, and Li+) on the hydrodynamic slip of aqueous alkali chloride solutions in an uncharged graphene nanochannel. We modeled the graphene-electrolyte interactions using the potential of Williams et al. [J. Phys. Chem. Lett. 8, 703 (2017)], which uses optimized graphene-ion Lennard-Jones interaction parameters to effectively account for surface and solvent polarizability effects on the adsorption of ions in an aqueous solution to a graphene surface. In our study, the hydrodynamic slip exhibits a decreasing trend for alkali chloride solutions with increasing salt concentration. The NaCl solution shows the highest reduction in the slip length followed by KCl and LiCl solutions, and the reduction in the slip length is very much dependent on the salt type. We also compared the slip length with that calculated using a standard unoptimized interatomic potential obtained from the Lorentz-Berthelot mixing rule for the ion-carbon interactions, which is not adjusted to account for the surface and solvent polarizability at the graphene surface. In contrast to the optimized model, the slip length of alkali chloride solutions in the unoptimized model shows only a nominal change with salt concentration and is also independent of the nature of salts. Our study shows that adoption of the computationally inexpensive optimized potential of Williams et al. for the graphene-ion interactions has a significant influence on the calculation of slip lengths for electrolyte solutions in graphene-based nanofluidic devices.

2.
J Chem Phys ; 150(6): 064103, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30770018

ABSTRACT

We use nonequilibrium molecular dynamics to explore the effect of shear flow on heat flux. By simulating a simple fluid in a channel bounded by tethered atoms, the heat flux is computed for two systems: a temperature driven one with no flow and a wall driven, Couette flow system. The results for the temperature driven system give Fourier's law thermal conductivity, which is shown to agree well with experiments. Through comparison of the two systems, we quantify the additional components of the heat flux parallel and normal to the walls due to shear flow. To compute the heat flux in the flow direction, the Irving-Kirkwood equations are integrated over a volume, giving the so-called volume average form, and they are also manipulated to get expressions for the surface averaged and method of planes forms. The method of planes and volume average forms are shown to give equivalent results for the heat flux when using small volumes. The heat flux in the flow direction is obtained consistently over a range of simulations, and it is shown to vary linearly with strain rate, as predicted by theory. The additional strain rate dependent component of the heat flux normal to the wall is obtained by fitting the strain rate dependence of the heat flux to the expected form. As a result, the additional terms in the thermal conductivity tensor quantified in this work should be experimentally testable.

3.
Phys Rev E ; 96(2-1): 022609, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950635

ABSTRACT

Molecular dynamics simulation was used to study a model colloidal suspension with two species of slightly different sized colloidal particles in an explicit solvent. In this work we calculated the four interdiffusion coefficients for the ternary system, which were then used to calculate the decay coefficients D_{±} of the two independent diffusive modes. We found that the slower D_{-} decay mode, which is associated with the system's ability to undergo compositional changes, was responsible for the long-time decay in the intermediate scattering function. We also found that a decrease in D_{-} to negligible values at a packing fraction of Φ_{g}=0.592 resulted in an extreme slow-down in the long-time decay of the intermediate scattering function often associated with the glass transition. Above Φ_{g}, the system formed a long-lived metastable state that did not relax to its equilibrium crystal state within the simulation time window. We concluded that the inhibition of crystallization was caused by the inability of the quenched fluid to undergo the compositional changes needed for the formation of the equilibrium crystal.

4.
Phys Rev E ; 94(1-1): 012619, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27575191

ABSTRACT

Molecular dynamics simulation was used to study a model colloidal suspension at a range of packing fractions from the dilute limit up to the freezing point. This study builds on previous work by the authors which modeled the colloidal particles with a hard core surrounded by a Weeks-Chandler-Anderson potential with modified interaction parameters, and included an explicit solvent. In this work, we study dynamical properties of the model by first calculating the velocity autocorrelation function, the self-diffusion coefficient, and the mutual diffusion coefficient. We also perform detailed calculations of the colloidal particle intermediate scattering function to study the change in dynamics leading up to the freezing point, and to determine whether the current model can be used to interpret light scattering experiments. We then perform a multiexponential analysis on the intermediate scattering function results and find that the data are fitted well by the sum of two exponentials, which is in line with previous analysis of experimental colloidal suspensions. The amplitudes and decay coefficients of the two modes are determined over a large range of wave vectors at packing fractions leading up to the freezing point. We found that the maximum wave vector at which macroscopic diffusive behavior was observed decreased as the packing fraction increased, and a simple extrapolation shows the maximum wave vector going to zero at the melting point. Lastly, the ratio of the two decay coefficients is compared to the scaling law proposed by Segrè and Pusey [Phys. Rev. Lett. 77, 771 (1996)PRLTAO0031-900710.1103/PhysRevLett.77.771]. It was found that the ratio was not constant, but instead was wave vector dependent.

5.
J Chem Phys ; 142(17): 174911, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25956124

ABSTRACT

The structure and rheology of model polymer blends under planar elongational flow have been investigated through nonequilibrium molecular dynamics simulations. The polymeric blends consist of linear polymer chains (187 monomers per chain) and dendrimer polymers of generations g = 1 - 4. The number fraction, x, of the dendrimer species is varied (4%, 8%, and 12%) in the blend melt. We study the effect of extension rate, dendrimer generation, and dendrimer number fraction on pair distribution functions for different blend systems. We also calculate the extension-rate dependent radius of gyration and ratios of the eigenvalues of the gyration tensor to study the elongation-induced deformation of the molecules in the blend. Melt rheological properties including the first and second extensional viscosities are found to fall into the range between those of pure dendrimer and pure linear polymer melts, which are correlated with the mass fraction and generation of the dendrimers in the blend.

6.
J Chem Phys ; 141(19): 194905, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25416910

ABSTRACT

We present nonequilibrium molecular dynamics (NEMD) simulation results for the miscibility, structural properties, and melt rheological behavior of polymeric blends under shear flow. The polymeric blends consist of chemically identical linear polymer chains (187 monomers per chain) and dendrimer polymers of generations g = 1-4. The number fraction x of the dendrimer species is varied (4%, 8%, and 12%) in the blend melt. The miscibility of blend species is measured, using the pair distribution functions gDL, gLL, and gDD. All the studied systems form miscible blend melts under the conditions investigated. We also study the effect of shear rate γ̇ and dendrimer generation on inter-penetration between blend species for different blend systems. The results reveal that shear flow increases the interpenetration of linear chains toward the core of the dendrimers. We also calculate the shear-rate dependent radius of gyration and ratios of the eigenvalues of the gyration tensor to study the shear-induced deformation of the molecules in the blend. Melt rheological properties including the shear viscosity and first and second normal stress coefficients obtained from NEMD simulations at constant pressure are found to fall into the range between those of pure dendrimer and pure linear polymer melts.

7.
J Chem Phys ; 133(14): 144907, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20950041

ABSTRACT

The nonlocal viscosity kernels of polymer melts have been determined by means of equilibrium molecular dynamics upon cooling toward the glass transition. Previous results for the temperature dependence of the self-diffusion coefficient and the value of the glass transition temperature are confirmed. We find that it is essential to include the attractive part of the interatomic potential in order to observe a strong glass transition. The width of the reciprocal space kernel decreases dramatically near the glass transition, being described by a deltalike function near and below the glass transition, leading to a very broad kernel in physical space. Thus, spatial nonlocality turns out to play an important role in polymeric fluids at temperatures near the glass transition temperature.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011801, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866638

ABSTRACT

The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3-6 atomic diameters, which means that generalized hydrodynamics must be applied in predicting the flow properties of molecular fluids on length scales where the strain rate varies sufficiently in the order of these dimensions (e.g., nanofluidic flows).

9.
J Phys Condens Matter ; 22(19): 195105, 2010 May 19.
Article in English | MEDLINE | ID: mdl-21386449

ABSTRACT

We present an extended analysis of the wavevector dependent shear viscosity of monatomic and diatomic (liquid chlorine) fluids over a wide range of wavevectors and for a variety of state points. The analysis is based on equilibrium molecular dynamics simulations, which involve the evaluation of transverse momentum density and shear stress autocorrelation functions. For liquid chlorine we present the results in both atomic and molecular formalisms. We find that the viscosity kernel of chlorine in the atomic representation is statistically indistinguishable from that in the molecular representation. The results further suggest that the real space viscosity kernels of monatomic and diatomic fluids depend sensitively on the density, the potential energy function and the choice of fitting function in reciprocal space. It is also shown that the reciprocal space shear viscosity data can be fitted to two different simple functional forms over the entire density, temperature and wavevector range: a function composed of n-Gaussian terms and a Lorentzian-type function. Overall, the real space viscosity kernel has a width of 3-6 atomic diameters, which means that the generalized hydrodynamic constitutive relation is required for fluids with strain rates that vary nonlinearly over distances of the order of atomic dimensions.


Subject(s)
Chlorine/chemistry , Microfluidics/methods , Models, Chemical , Solutions/chemistry , Viscosity , Computer Simulation , Shear Strength
10.
J Chem Phys ; 131(16): 164901, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-19894972

ABSTRACT

Nonequilibrium molecular dynamics simulations were performed for a family of hyperbranched polymers of the same molecular weight but with different chain lengths between branches. Microscopic structural properties including mean squared radius of gyration, distribution of beads from the center of mass and from the core and the interpenetration function of these systems were characterized. A relationship between the zero shear rate mean squared radius of gyration and the Wiener index was established. The molecular and bond alignment tensors were analyzed to characterize the flow birefringence of these hyperbranched polymers. The melt rheology was also studied and the crossover from the Newtonian to non-Newtonian behavior was captured for all polymer fluids in the considered range of strain rates. Rheological properties including the shear viscosity and normal stress coefficients obtained from constant pressure simulations were found to be the same as those from constant volume simulations except at high strain rates due to shear dilatancy. A linear dependence of zero shear rate viscosities on the number of spacer units was found. The stress optical rule was shown to be valid at low strain rates with the stress optical coefficient of approximately 3.2 independent of the topologies of polymers.

11.
J Chem Phys ; 131(4): 044902, 2009 Jul 28.
Article in English | MEDLINE | ID: mdl-19655914

ABSTRACT

The melt rheology of four hyperbranched polymer structures with different molecular weights has been studied using nonequilibrium molecular dynamics (NEMD). Systems were simulated over a wide range of strain rates to capture the crossover behavior from Newtonian to non-Newtonian regimes. Rheological properties including shear viscosity and first and second normal stress coefficients were computed and the transition to shear thinning was observed at different strain rates for hyperbranched polymers of different sizes. The results were consistent with previous findings from NEMD simulation of linear and dendritic polymers. Flow birefringence was characterized by taking into account both form and intrinsic birefringences, which result from molecular and bond alignment, respectively. The stress optical rule was tested and shown to be valid only in the Newtonian regime and violated in the strong flow regime where the rule does not take into account flow-induced changes of the microstructure.

12.
J Chem Phys ; 130(7): 074901, 2009 Feb 21.
Article in English | MEDLINE | ID: mdl-19239310

ABSTRACT

Hyperbranched polymer melts have been simulated using a coarse-grained model and nonequilibrium molecular dynamics (NEMD) techniques. In order to determine the shear-induced changes in the structural properties of hyperbranched polymers, various parameters were calculated at different strain rates. The radii of gyration which characterize the size of the polymer were evaluated. The tensor of gyration was analyzed and results indicate that hyperbranched polymer molecules have a prolate ellipsoid shape under shear. As hyperbranched polymers have compact, highly branched architecture and layers of beads have increasing densities which might lead to an unusual distribution of mass, the distribution of beads was also studied. The distribution of terminal beads was investigated to understand the spatial arrangement of these groups which is very important for hyperbranched polymer applications, especially in drug delivery.

13.
J Chem Phys ; 126(14): 144706, 2007 Apr 14.
Article in English | MEDLINE | ID: mdl-17444731

ABSTRACT

In this paper the authors propose a novel method to study the local linear viscoelasticity of fluids confined between two walls. The method is based on the linear constitutive equation and provides details about the real and imaginary parts of the local complex viscosity. They apply the method to a simple atomic fluid undergoing zero mean oscillatory flow using nonequilibrium molecular dynamics simulations. The method shows that the viscoelastic properties of the fluid exhibit dramatic spatial changes near the wall-fluid boundary due to the high density in this region. It is also shown that the real part of the viscosity converges to the frequency dependent local shear viscosity sufficiently far away from the wall. This also provides valuable information about the transport properties in the fluid, in general. The viscosity is compared with predictions from the local average density model. The two methods disagree in that the local average density model predicts larger viscosity variations near the wall-fluid boundary than what is observed through the method presented here.

14.
J Chem Phys ; 123(19): 194905, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16321111

ABSTRACT

The shear-rate dependence of viscosity is studied for model polymer melts containing various concentrations of spherical filler particles by molecular-dynamics simulations, and the results are compared with the experimental results for calcium-carbonate-filled polypropylene. Although there are some significant differences in scale between the simulated model polymer composite and the system used in the experiments, some important qualitative similarities in shear behavior are observed. The trends in the steady-state shear viscosities of the simulated polymer-filler system agree with those seen in the experimental results; shear viscosities, zero-shear viscosities, and the rate of shear thinning are all seen to increase with filler content in both the experimental and simulated systems. We observe a significant difference between the filler volume fraction dependence of the zero-shear viscosity of the simulated system and that of the experimental system that can be attributed to a large difference in the ratio of the filler particle radius to the radius of gyration of the polymer molecules. In the simulated system, the filler particles are so small that they only have a weak effect on the viscosity of the composite at low filler volume fraction, but in the experimental system, the viscosity of the composite increases rapidly with increasing filler volume fraction. Our results indicate that there exists a value of the ratio of the filler particle radius to the polymer radius of gyration such that the zero-shear-rate viscosity of the composite becomes approximately independent of the filler particle volume fraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...