Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31555218

ABSTRACT

Osteoporosis is a "silent disease" characterized by fragile and impaired bone quality. Bone fracture results in increased mortality and poor quality of life in aged people particularly in postmenopausal women. Bone is maintained through the delicate balance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The imbalance is caused most often by overly active osteoclasts due to estrogen deficiency. Natural products have long been used to prevent and treat osteoporosis since they have fewer side effects. The marine environment is a potential source of biologically and structurally novel biomolecules with promising biological activities but is less explored for the treatment of bone-related diseases. The present study aims to evaluate the antiosteoporotic effect of Hexane fraction of Turbo brunneus methanolic extract (HxTME) and to investigate its role in RANK-RANKL signaling pathway using in vitro osteoclasts cultures and in vivo ovariectomized (OVX) Swiss mice model. The present study demonstrated that the HxTME significantly inhibited RANKL induced osteoclast differentiation and maturation in vitro. HxTME completely downregulated the mRNA expression of key transcription factors such as NFATc1, c-FOS, and osteoclasts related genes involved in osteoclastogenesis. In vivo studies also depicted the effectiveness of HxTME in ovariectomized mice by preserving bone microarchitecture, mineral content, and inhibiting bone loss in treated mice as analyzed by Histomorphometry, MicroCT, and Raman spectroscopy. Oral administration of HxTME fraction resulted in the decreased percentage of F4/80+, CD11b+, and CD4+ RANKL+ T cells in OVX mice whereas pro-osteoclastic cytokine, IL6 was markedly reduced upon treatment with HxTME. On stimulation with PMA/Io and PHA, a significant decrease in proliferative response in the splenocytes of HxTME treated OVX mice was observed. Fatty acid profiling revealed that HxTME is rich in ω3 and ω6 polyunsaturated fatty acids (PUFAs), which have high nutraceutical properties and are known to play important role in growth, development and maintenance of health. Therefore, HxTME may be a good source of nutraceutical in the treatment of bone-related diseases particularly in postmenopausal osteoporosis and may be pursued as a potential candidate for treatment and management of osteoporosis.

2.
Biomater Sci ; 6(12): 3241-3250, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30334035

ABSTRACT

For diseases related to genetic disorders or cancer, many cellular therapies rely on the ex vivo modification of cells for attaining a desired therapeutic effect. The efficacy of such therapies involving the genetic modification of cells relies on the extent of gene expression and subsequent persistence of modified cells when infused into the patient's body. In situ gene delivery implies the manipulation of cells in their in vivo niche such that the effectiveness can be improved by minimizing post manipulation effects like cell death, lack of persistence, etc. Furthermore, material-based in situ localized gene delivery can reduce the undesired side effects caused by systemic modifications. Here, we have used polyethylene (glycol) diacrylate (PEGDA) based cryogels to genetically modify cells in vivo with a focus on immunotherapy. PEGDA cryogels were either blended with gelatin methacrylate (GELMA) or surface modified with poly-l-lysine (PLL) in order to improve cell adhesion and/or retain viruses for localized gene delivery. On using the lentiviruses encoding gene for green fluorescent protein (GFP) in in vitro experiments, we found higher transduction efficiency in HEK 293FT cells via PEGDA modified with poly-l-lysine (PEGDA-PLL) and PEGDA-GELMA cryogels compared to PEGDA cryogels. In vitro release experiments showed improved retention of GFP lentiviruses in PEGDA-PLL cryogels, which were then employed for in vivo gene delivery and were demonstrated to perform better than the corresponding bolus delivery of lentiviruses through an injection. Both physical and biological characterization studies of these cryogels show that this material platform can be used for gene delivery as well as other tissue engineering applications.


Subject(s)
Cryogels/chemistry , Gene Transfer Techniques , Polyethylene Glycols/chemistry , Cells, Cultured , Gelatin/chemistry , HEK293 Cells , Humans , Lentivirus/genetics , Lentivirus/metabolism , Polylysine/chemistry
3.
J Ethnopharmacol ; 197: 73-86, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-27377339

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bhasma, Ayurvedic medicinal preparations, are prepared using herbs and minerals on following long iterative procedures. However, industrially mercury and sulphur are more commonly used to prepare bhasma from its raw material. The end point of this iterative procedure is mainly judged by the traditional tests specifying physical appearance of the powders. They fail to give better idea about chemical nature of the material. Moreover, the differences in biological activity of final product verses intermediate are not addressed. AIM OF THE STUDY: To compare the physicochemical as well as biological properties of the Jasad bhasma and its in-process intermediate using modern science methods. MATERIALS AND METHODS: The Jasad bhasma and its in-process intermediate are characterized for their physicochemical properties using electron microscopy, x-ray diffraction and CHNS(O) analysis. The biological effects of both the preparations are then studied. The bioaccumulation of zinc, effect on liver antioxidant status, liver and kidney function (by conventional tests as well as SPECT: Single Photon Emission Computed Tomography), effect on blood cells and effect on immune system are studied in mice model, Swiss albino. Since bhasma is given with an accompaniment (anupan), all the bioactivity studies were carried out by administering the preparation with and without Amala powder (Phyllanthus emblica L., fruit, dry powder) as anupan. RESULTS: The XRD results accompanied with Rietveld analysis indicate that the final bhasma is mainly oxide of zinc, whereas the intermediate is mainly sulphide of zinc. The animal studies show that the bhasma as well as its intermediate do not lead to any bioaccumulation of zinc in major organs, when administered with and without anupan. Both, bhasma and intermediate do not cause any deleterious effects on kidney and liver as indicated by blood biochemistry and SPECT studies. However, the intermediate perturbs antioxidant status more and affects the platelet turnover, in comparison with bhasma. On 28day treatment, the bhasma treated animals show prominence of TH1 mediated immune response whereas, intermediate treated animals show prominence of TH2 mediated immune response. CONCLUSION: A set of simple modern microscopy and diffraction techniques can affirmatively identify in-process intermediate from the final preparation. These can be used to decide the end point of long and iterative preparation methods in accordance with modern science practices. The differences in physicochemical properties of particles from the two preparations reflect in their different biological effects. Moreover, the bhasma affects several components of biological systems which again in-turn interact with each other, which emphasizes the need of multifaceted studies in this field.


Subject(s)
Plant Preparations/adverse effects , Plant Preparations/pharmacology , Plants, Medicinal/adverse effects , Plants, Medicinal/chemistry , Animals , Antioxidants/metabolism , Kidney/drug effects , Kidney/immunology , Liver/drug effects , Liver/immunology , Male , Medicine, Ayurvedic , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...