Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 1592, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29371608

ABSTRACT

Modern engineered materials are composed of space-filling grains or domains separated by a network of interfaces or boundaries. Such polycrystalline microstructures have the capacity to coarsen through boundary migration. Grain growth theories account for the topology of grains and the connectivity of the boundary network in terms of the familiar Euclidian dimension and Euler's polyhedral formula, both of which are based on integer numbers. However, we recently discovered an unusual growth mode in a nanocrystalline Pd-Au alloy, in which grains develop complex, highly convoluted surface morphologies that are best described by a fractional dimension of ∼1.2 (extracted from the perimeters of grain cross sections). This fractal value is characteristic of a variety of domain growth scenarios-including explosive percolation, watersheds of random landscapes, and the migration of domain walls in a random field of pinning centers-which suggests that fractal grain boundary migration could be a manifestation of the same universal behavior.

2.
Proc Natl Acad Sci U S A ; 113(41): E5998-E6006, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27671639

ABSTRACT

Sintering is a key technology for processing ceramic and metallic powders into solid objects of complex geometry, particularly in the burgeoning field of energy storage materials. The modeling of sintering processes, however, has not kept pace with applications. Conventional models, which assume ideal arrangements of constituent powders while ignoring their underlying crystallinity, achieve at best a qualitative description of the rearrangement, densification, and coarsening of powder compacts during thermal processing. Treating a semisolid Al-Cu alloy as a model system for late-stage sintering-during which densification plays a subordinate role to coarsening-we have used 3D X-ray diffraction microscopy to track the changes in sample microstructure induced by annealing. The results establish the occurrence of significant particle rotations, driven in part by the dependence of boundary energy on crystallographic misorientation. Evidently, a comprehensive model for sintering must incorporate crystallographic parameters into the thermodynamic driving forces governing microstructural evolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...