Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 54: 466-477, 2017 10.
Article in English | MEDLINE | ID: mdl-28803969

ABSTRACT

Since 2003, India has had a well-established influenza surveillance network, though Influenza C virus was not the focus of study. We therefore retrospectively analyzed clinical samples from Pune, western India collected during January 2009 to August 2015, by real-time RT-PCR. Three of 2530 samples of patients with influenza-like illness (ILI) or severe acute respiratory illness (SARI) showed positivity for Influenza C virus infection, while 105 and 31 samples were positive for Influenza A and B viruses respectively. Influenza C viruses were successfully isolated using the embryonated egg system and whole genomes were sequenced and analyzed phylogenetically. HE gene-based phylogeny showed that two viruses C/India/P119564/2011 and C/India P121719/2012 clustered with the C/Sao Paulo/378/82 (SP82) lineage, whereas C/India/P135047/2013 clustered with the C/Kanagawa/1/76 (KA76) lineage. The internal gene of these viruses grouped in two lineages. The PB1, PB2, M and NS genes of the study viruses grouped with C/Yamagata/26/81 (YA81), while the P3 (PA) and NP genes grouped with C/Mississippi/80 (MS80). Bayesian clock studies conclude that the Indian strains may have emerged through multiple reassortment events.


Subject(s)
Gammainfluenzavirus/genetics , Gammainfluenzavirus/isolation & purification , Influenza, Human/epidemiology , Sequence Analysis, RNA/methods , Adolescent , Bayes Theorem , Child , Evolution, Molecular , Genome, Viral , Humans , India/epidemiology , Influenza, Human/virology , Phylogeny , Real-Time Polymerase Chain Reaction , Reassortant Viruses/genetics , Retrospective Studies
2.
Indian J Med Res ; 140(2): 244-51, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25297358

ABSTRACT

BACKGROUND & OBJECTIVES: Recent influenza antiviral resistance studies in South East Asia, Europe and the United States reveal adamantane and neuraminidase inhibitor (NAIs) resistance. This study was undertaken to evaluate antiviral resistance in influenza viruses isolated from various parts of India, during 2004 to 2011. METHODS: Influenza viruses were analyzed genetically for known resistance markers by M2 and NA gene sequencing. Influenza A/H1N1 (n=206), A/H3N2 (n=371) viruses for amantadine resistance and A/H1N1 (n=206), A/H3N2 (n=272) and type B (n=326) for oseltamivir resistance were sequenced. Pandemic (H1N1) (n=493) isolates were tested for H274Y mutation by real time reverse transcription (rRT)-PCR. Randomly selected resistant and sensitive influenza A/H1N1 and A/H3N2 viruses were confirmed by phenotypic assay. RESULTS: Serine to asparagine (S3IN) mutation was detected in six isolates of 2007-2008. One dual-resistant A/H1N1 was detected for the first time in India with leucine to phenylalanine (L26F) mutation in M2 gene and H274Y mutation in NA gene. A/H3N2 viruses showed an increase in resistance to amantadine from 22.5 per cent in 2005 to 100 per cent in 2008 onwards with S3IN mutation. Fifty of the 61 (82%) A/H1N1 viruses tested in 2008-2009 were oseltamivir resistant with H274Y mutation, while all A/H3N2, pandemic A/H1N1 and type B isolates remained sensitive. Genetic results were also confirmed by phenotypic analysis of randomly selected 50 resistant A/H1N1 and 40 sensitive A/H3N2 isolates. INTERPRETATION & CONCLUSIONS: Emergence of influenza viruses resistant to amantadine and oseltamivir in spite of negligible usage of antivirals emphasizes the need for continuous monitoring of antiviral resistance.


Subject(s)
Drug Resistance, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Amantadine , Base Sequence , Cluster Analysis , Genetic Markers/genetics , Humans , India , Models, Genetic , Molecular Sequence Data , Mutation, Missense , Oseltamivir , Phylogeny , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...