Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(9): 15382-15396, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36000823

ABSTRACT

Enhancing the kinetics of liquid-vapor transition from nanoscale confinements is an attractive strategy for developing evaporation and separation applications. The ultimate limit of confinement for evaporation is an atom thick interface hosting angstrom-scale nanopores. Herein, using a combined experimental/computational approach, we report highly enhanced water evaporation rates when angstrom sized oxygen-functionalized graphene nanopores are placed at the liquid-vapor interface. The evaporation flux increases for the smaller nanopores with an enhancement up to 35-fold with respect to the bare liquid-vapor interface. Molecular dynamics simulations reveal that oxygen-functionalized nanopores render rapid rotational and translational dynamics to the water molecules due to a reduced and short-lived water-water hydrogen bonding. The potential of mean force (PMF) reveals that the free energy barrier for water evaporation decreases in the presence of nanopores at the atomically thin interface, which further explains the enhancement in evaporation flux. These findings can enable the development of energy-efficient technologies relying on water evaporation.

2.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34493654

ABSTRACT

Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.

3.
ACS Nano ; 15(8): 13230-13239, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34319081

ABSTRACT

Predictable and tunable etching of angstrom-scale nanopores in single-layer graphene (SLG) can allow one to realize high-performance gas separation even from similar-sized molecules. We advance toward this goal by developing two etching regimes for SLG where the incorporation of angstrom-scale vacancy defects can be controlled. We screen several exposure profiles for the etchant, controlled by a multipulse millisecond treatment, using a mathematical model predicting the nucleation and pore expansion rates. The screened profiles yield a narrow pore-size-distribution (PSD) with a majority of defects smaller than missing 16 carbon atoms, suitable for CO2/N2 separation, attributing to the reduced pore expansion rate at a high pore density. Resulting nanoporous SLG (N-SLG) membranes yield attractive CO2 permeance of 4400 ± 2070 GPU and CO2/N2 selectivity of 33.4 ± 7.9. In the second etching regime, by limiting the supply of the etchant, the nanopores are allowed to expand while suppressing the nucleation events. Extremely attractive carbon capture performance marked with CO2 permeance of 8730 GPU, and CO2/N2 selectivity of 33.4 is obtained when CO2-selective polymeric chains are functionalized on the expanded nanopores. We show that the etching strategy is uniform and scalable by successfully fabricating high-performance centimeter-scale membrane.

4.
Sci Adv ; 7(9)2021 Feb.
Article in English | MEDLINE | ID: mdl-33627433

ABSTRACT

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2 However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm-2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.

5.
Nat Mater ; 20(3): 362-369, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33020610

ABSTRACT

The synthesis of molecular-sieving zeolitic membranes by the assembly of building blocks, avoiding the hydrothermal treatment, is highly desired to improve reproducibility and scalability. Here we report exfoliation of the sodalite precursor RUB-15 into crystalline 0.8-nm-thick nanosheets, that host hydrogen-sieving six-membered rings (6-MRs) of SiO4 tetrahedra. Thin films, fabricated by the filtration of a suspension of exfoliated nanosheets, possess two transport pathways: 6-MR apertures and intersheet gaps. The latter were found to dominate the gas transport and yielded a molecular cutoff of 3.6 Å with a H2/N2 selectivity above 20. The gaps were successfully removed by the condensation of the terminal silanol groups of RUB-15 to yield H2/CO2 selectivities up to 100. The high selectivity was exclusively from the transport across 6-MR, which was confirmed by a good agreement between the experimentally determined apparent activation energy of H2 and that computed by ab initio calculations. The scalable fabrication and the attractive sieving performance at 250-300 °C make these membranes promising for precombustion carbon capture.

6.
Chimia (Aarau) ; 74(4): 263-269, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32331544

ABSTRACT

Two-dimensional (2D) materials with atom- or few-atoms-thick layers have emerged as building-blocks in the synthesis of the next-generation membrane-based separations. Generally, 2D material-based membranes display high permeation and high selectivity due to their unique structure composed of nanopores and nanochannels with extremely short transport pathways. In this review, the latest advances and ground-breaking research studies on 2D nanosheets for gas separation are highlighted with a focus on the different strategies in synthesizing 2D nanosheets, their assembly into thin membranes and the type of transport mechanism taking place in such membranes.

7.
Sci Adv ; 6(4): eaay9851, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32064325

ABSTRACT

Poly(triazine imide) (PTI), a crystalline g-C3N4, hosting two-dimensional nanoporous structure with an electron density gap of 0.34 nm, is highly promising for high-temperature hydrogen sieving because of its high chemical and thermal robustness. Currently, layered PTI is synthesized in potentially unsafe vacuum ampules in milligram quantities. Here, we demonstrate a scalable and safe ambient pressure synthesis route leading to several grams of layered PTI platelets in a single batch with 70% yield with respect to the precursor. Solvent exfoliation under anhydrous conditions led to single-layer PTI nanosheets evidenced by the observation of triangular g-C3N4 nanopores. Gas permeation studies confirm that PTI nanopores can sieve He and H2 from larger molecules. Last, high-temperature H2 sieving from PTI nanosheet-based membranes, prepared by the scalable filter coating technique, is demonstrated with H2 permeance reaching 1500 gas permeation units, with H2/CO2, H2/N2, and H2/CH4 selectivities reaching 10, 50, and 60, respectively, at 250°C.

8.
Nat Commun ; 9(1): 2632, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29980683

ABSTRACT

The single-layer graphene film, when incorporated with molecular-sized pores, is predicted to be the ultimate membrane. However, the major bottlenecks have been the crack-free transfer of large-area graphene on a porous support, and the incorporation of molecular-sized nanopores. Herein, we report a nanoporous-carbon-assisted transfer technique, yielding a relatively large area (1 mm2), crack-free, suspended graphene film. Gas-sieving (H2/CH4 selectivity up to 25) is observed from the intrinsic defects generated during the chemical-vapor deposition of graphene. Despite the ultralow porosity of 0.025%, an attractive H2 permeance (up to 4.1 × 10-7 mol m-2 s-1 Pa-1) is observed. Finally, we report ozone functionalization-based etching and pore-modification chemistry to etch hydrogen-selective pores, and to shrink the pore-size, improving H2 permeance (up to 300%) and H2/CH4 selectivity (up to 150%). Overall, the scalable transfer, etching, and functionalization methods developed herein are expected to bring nanoporous graphene membranes a step closer to reality.

SELECTION OF CITATIONS
SEARCH DETAIL
...