Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 143(4)2021 04 01.
Article in English | MEDLINE | ID: mdl-33156350

ABSTRACT

Finite element analysis (FEA) has been widely used to study foot biomechanics and pathological functions or effects of therapeutic solutions. However, development and analysis of such foot modeling is complex and time-consuming. The purpose of this study was therefore to propose a method coupling a FE foot model with a model order reduction (MOR) technique to provide real-time analysis of the dynamic foot function. A generic and parametric FE foot model was developed and dynamically validated during stance phase of gait. Based on a design of experiment of 30 FE simulations including four parameters related to foot function, the MOR method was employed to create a prediction model of the center of pressure (COP) path that was validated with four more random simulations. The four predicted COP paths were obtained with a 3% root-mean-square-error (RMSE) in less than 1 s. The time-dependent analysis demonstrated that the subtalar joint position and the midtarsal joint laxity are the most influential factors on the foot functions. These results provide additionally insight into the use of MOR technique to significantly improve speed and power of the FE analysis of the foot function and may support the development of real-time decision support tools based on this method.


Subject(s)
Finite Element Analysis , Foot
2.
Proc Inst Mech Eng H ; 234(8): 761-768, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32475295

ABSTRACT

The development of artificial prosthetic lower limbs aims to improve patient's mobility while avoiding secondary problems resulting from the use of the prostheses themselves. The residual limb is a pressure-sensitive area where skin injuries and pain are more likely to develop. Requirements for adequate prosthetic limbs have now become urgent to improve amputee's quality of life. This study aims to understand how socket design parameters related to geometry can influence pressure distribution in the residual limb. A finite element model was developed to simulate the mechanical loading applied on the residual limb of a below-knee amputee while walking. A sensitivity analysis to socket initial geometry, scaling the socket downward in the horizontal plane, was performed. Recordings include stress levels on the skin and in the residual limb deep soft tissues. Peak stress was reduced by up to 51% with a limited reduction of the socket size. More important scale reduction of the residual limb would lead to possible negative effects, such as stress concentrations in sensitive areas. This result confirms the interest of the prosthetist to develop a well-fitting socket, possibly a little smaller than the residual limb itself, in order to avoid residual limb mobility in the socket that could cause friction and stress concentrations. Non-homogeneous geometrical reductions of the socket should be further investigated.


Subject(s)
Amputation Stumps , Amputees , Artificial Limbs , Prosthesis Design , Tibia/surgery , Humans , Male , Quality of Life
3.
Technol Health Care ; 27(6): 669-677, 2019.
Article in English | MEDLINE | ID: mdl-31033471

ABSTRACT

BACKGROUND: Prosthetic rehabilitation improves the overall quality of life of patients, despite discomfort and medical complications. No quantitative assessment of prosthesis-patient interaction is used in routine protocols and prosthesis quality still results from the manufacturer's know-how. OBJECTIVE: Our objective is to investigate whether pressure can be a relevant factor for assessing socket adequacy. METHODS: A total of 8 transtibial amputee volunteers took part in this experimental study. The protocol included static standing and 2 minutes walking tests while the stump-to-socket interface pressures were measured. Questionnaires on comfort and pain were also conducted. RESULTS: During static standing test, maximum pressures were recorded in the proximal region of the leg, with a peak value reaching 121.1 ± 31.6 kPa. During dynamic tests, maximum pressures of 254.1 ± 61.2 kPa were recorded during the loading phase of the step. A significant correlation was found between the pain score and static maximum recorded pressure (r= 0.81). CONCLUSIONS: The protocol proposed and evaluated in this study is a repeatable, easy-to-set quantified analysis of the patient to socket interaction while standing and walking. This approach is likely to improve feedback for prosthesis manufacturers and consequently the overall design of prostheses.


Subject(s)
Amputation Stumps/pathology , Artificial Limbs , Skin/physiopathology , Adult , Amputation, Surgical/rehabilitation , Amputation, Traumatic/rehabilitation , Artificial Limbs/adverse effects , Humans , Leg , Male , Pain/etiology , Phantom Limb/etiology , Pressure , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...