Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurobiol Aging ; 113: 108-117, 2022 05.
Article in English | MEDLINE | ID: mdl-35325812

ABSTRACT

Aged and photoaged skin exhibit fine wrinkles that are signs of epidermal inflammation and degeneration. It has been shown that healthy elderly skin expresses amyloidogenic proteins, including α-Synuclein, which are known to oligomerize and trigger inflammation and neurodegeneration. However, little is known about their putative role in skin physiology and sensitivity. To unravel this possible role, we investigated the impact of oligomeric α-Synuclein (Oα-Syn) in 2D and 3D keratinocyte human models. Exogenous Oα-Syn caused degeneration of reconstructed human epidermis (RHE) by diminishing proliferation and thickness of the stratum basale. Oα-Syn also increased NF-kB nuclear translocation in keratinocytes and triggered inflammation in the RHE, by increasing expression of interleukin-1ß and tumor necrosis factor-alpha, and the release of tumor necrosis factor-alpha in a time-dependent manner. Dexamethasone and an IL-1ß inhibitor partially diminished RHE degeneration caused by Oα-Syn. These findings suggest that Oα-Syn induces epidermal inflammation and decreases keratinocyte proliferation, and therefore might contribute to epidermal degeneration observed in human skin aging.


Subject(s)
Tumor Necrosis Factor-alpha , alpha-Synuclein , Aged , Epidermis/metabolism , Epidermis/pathology , Humans , Inflammation/metabolism , Keratinocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , alpha-Synuclein/metabolism
2.
Sci Rep ; 7(1): 12863, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28993683

ABSTRACT

Dimethyltryptamines are entheogenic serotonin-like molecules present in traditional Amerindian medicine recently associated with cognitive gains, antidepressant effects, and changes in brain areas related to attention. Legal restrictions and the lack of adequate experimental models have limited the understanding of how such substances impact human brain metabolism. Here we used shotgun mass spectrometry to explore proteomic differences induced by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) on human cerebral organoids. Out of the 6,728 identified proteins, 934 were found differentially expressed in 5-MeO-DMT-treated cerebral organoids. In silico analysis reinforced previously reported anti-inflammatory actions of 5-MeO-DMT and revealed modulatory effects on proteins associated with long-term potentiation, the formation of dendritic spines, including those involved in cellular protrusion formation, microtubule dynamics, and cytoskeletal reorganization. Our data offer the first insight about molecular alterations caused by 5-MeO-DMT in human cerebral organoids.


Subject(s)
Methoxydimethyltryptamines/pharmacology , Organoids/metabolism , Proteome/metabolism , Biomarkers/metabolism , Cell Line , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Humans , Long-Term Potentiation/drug effects , Morphogenesis/drug effects , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Organoids/drug effects , Proteomics , Signal Transduction/drug effects , Time Factors
3.
PeerJ ; 4: e2727, 2016.
Article in English | MEDLINE | ID: mdl-27957390

ABSTRACT

Harmine is the ß-carboline alkaloid with the highest concentration in the psychotropic plant decoction Ayahuasca. In rodents, classical antidepressants reverse the symptoms of depression by stimulating neuronal proliferation. It has been shown that Ayahuasca presents antidepressant effects in patients with depressive disorder. In the present study, we investigated the effects of harmine in cell cultures containing human neural progenitor cells (hNPCs, 97% nestin-positive) derived from pluripotent stem cells. After 4 days of treatment, the pool of proliferating hNPCs increased by 71.5%. Harmine has been reported as a potent inhibitor of the dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), which regulates cell proliferation and brain development. We tested the effect of analogs of harmine, an inhibitor of DYRK1A (INDY), and an irreversible selective inhibitor of monoamine oxidase (MAO) but not DYRK1A (pargyline). INDY but not pargyline induced proliferation of hNPCs similarly to harmine, suggesting that inhibition of DYRK1A is a possible mechanism to explain harmine effects upon the proliferation of hNPCs. Our findings show that harmine enhances proliferation of hNPCs and suggest that inhibition of DYRK1A may explain its effects upon proliferation in vitro and antidepressant effects in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL