Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 244(Pt 2): 1281-1293, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28625352

ABSTRACT

To map out key lipid-related pathways that lead to rapid triacylglyceride accumulation in oleaginous microalgae, RNA-Seq was performed with Tetraselmis sp. M8 at 24h after exhaustion of exogenous nitrogen to reveal molecular changes during early stationary phase. Further gene expression profiling by quantitative real-time PCR at 16-72h revealed a distinct shift in expression of the fatty acid/triacylglyceride biosynthesis and ß-oxidation pathways, when cells transitioned from log-phase into early-stationary and stationary phase. Metabolic reconstruction modeling combined with real-time PCR and RNA-Seq gene expression data indicates that the increased lipid accumulation is a result of a decrease in lipid catabolism during the early-stationary phase combined with increased metabolic fluxes in lipid biosynthesis during the stationary phase. During these two stages, Tetraselmis shifts from reduced lipid consumption to active lipid production. This process appears to be independent from DGAT expression, a key gene for lipid accumulation in microalgae.


Subject(s)
Metabolic Flux Analysis , Microalgae , Nitrogen , RNA , Lipids
2.
Microbiome ; 4(1): 36, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27388460

ABSTRACT

BACKGROUND: Our view of host-associated microbiota remains incomplete due to the presence of as yet uncultured constituents. The Bacteroidales family S24-7 is a prominent example of one of these groups. Marker gene surveys indicate that members of this family are highly localized to the gastrointestinal tracts of homeothermic animals and are increasingly being recognized as a numerically predominant member of the gut microbiota; however, little is known about the nature of their interactions with the host. RESULTS: Here, we provide the first whole genome exploration of this family, for which we propose the name "Candidatus Homeothermaceae," using 30 population genomes extracted from fecal samples of four different animal hosts: human, mouse, koala, and guinea pig. We infer the core metabolism of "Ca. Homeothermaceae" to be that of fermentative or nanaerobic bacteria, resembling that of related Bacteroidales families. In addition, we describe three trophic guilds within the family, plant glycan (hemicellulose and pectin), host glycan, and α-glucan, each broadly defined by increased abundance of enzymes involved in the degradation of particular carbohydrates. CONCLUSIONS: "Ca. Homeothermaceae" representatives constitute a substantial component of the murine gut microbiota, as well as being present within the human gut, and this study provides important first insights into the nature of their residency. The presence of trophic guilds within the family indicates the potential for niche partitioning and specific roles for each guild in gut health and dysbiosis.


Subject(s)
Bacteroidetes/physiology , Feces/microbiology , Metagenomics/methods , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Gastrointestinal Tract/microbiology , Genome, Bacterial , Guinea Pigs , Host-Pathogen Interactions , Humans , Mice , Microbiota , Phascolarctidae/microbiology , Phylogeny , Polysaccharides/metabolism
3.
Methods Mol Biol ; 1090: 317-32, 2014.
Article in English | MEDLINE | ID: mdl-24222424

ABSTRACT

Considerable progress has been made in plant genome-scale metabolic reconstruction and modeling in recent years. Such reconstructions made it possible to explore metabolic phenotypes through appropriate model formulation and optimization methods. As a result, plant genome-scale modeling has increasingly attracted interest from the plant research community. In this chapter, the first generation of plant genome-scale metabolic reconstructions is presented, along with the important concepts behind model and constraint formulation. A brief protocol describing the use of constraint-based reconstruction and analysis (COBRA) Toolbox in flux simulation and model modification is provided. This is followed by a presentation of metabolic constraints required to generate fluxes in AraGEM using COBRA that describe photosynthesis, photorespiration, and respiration, respectively. Overall, plant genome-scale modeling is a powerful approach that is accessible and readily adopted.


Subject(s)
Computer Simulation , Genome, Plant , Models, Biological , Metabolic Flux Analysis , Metabolic Networks and Pathways/genetics , Plants/genetics , Plants/metabolism , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...