Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 83(9): 876, 1999 Sep.
Article in English | MEDLINE | ID: mdl-30841049

ABSTRACT

In June 1998, during a cool, humid period, typical bacterial spot symptoms were observed on basil plantlets (Ocimun basilicum L. 'Royal Louis' and 'Zaes') in a commercial greenhouse in La Plata, Argentina. Affected plants had dark brown to black lesions on cotyledons. Spots on leaves were first water soaked, then became necrotic and progressed inward from the margins. Disease incidence approached 30%. Symptoms were similar to those reported by Little et al. (2) on basil affected by Pseudomonas viridiflava. No pathogenic fungi or viruses were associated with symptomatic plants. Bacterial streaming was observed from lesion margins. Bacteria consistently isolated from leaf lesions formed cream-colored, glistening, convex colonies on sucrose peptone agar and a green fluorescent pigment on King's medium B. Bacterial growth produced a distinctive olive green pigment on glycerol agar medium and a pink pigment on T-5 medium (1). Four isolates selected for further study were aerobic, Gram-negative, non-spore-forming rods. In LOPAT (levan-oxidase-potato rot-arginine dihydrolase-tobacco hypersensitivity) tests, all induced a hypersensitive response in tobacco plants, caused soft rot of potato tubers, and were negative for levan, oxidase, and arginine dihydrolase. In addition, strains rotted onion slices and produced a reddish sunken lesion on bean pods. Acid was produced aerobically from D-glucose, mannitol, mesoinositol and sorbitol, but not from D-arabinose, L-rhamnose, melibiose, amygdalin, or sucrose. Bacteria used D-tartrate, pyruvate, and citrate, but not benzoate. The strains did not hydrolyze starch, exhibited an oxidative metabolism of glucose, and did not reduce nitrates to nitrites or accumulate poly-ß-hydroxybutyrate inclusions. Negative reactions were obtained with indole, ornithine, and D-tryptophan. Isolates hydrolyzed gelatine, used Tween 80, were positive for catalase, and were unable to grow in the presence of 5% NaCl. Colonies developed at 4°C but not 37°C. Reactions were identical to those of reference strains ICMP 5776 and 12363, which were included in all tests for comparison. Pathogenicity was verified on 35-day-old basil plants by both spraying and infiltration inoculations with bacterial suspensions (108 and 105 cells per ml, respectively). Carborundum was included in the inoculum used for a set of plants inoculated by spraying. Controls were injected or sprayed (with and without Carborundum) with sterile, distilled water. In addition, bean (Phaseolus vulgaris cv. Nag12 INTA) and lettuce (Lactuca sativa cv. criolla), both reported as host plants, were inoculated by spraying with bacterial suspensions of 107 cells per ml plus Carborundum. After 48 h in a humid chamber, inoculated plants and controls were maintained at 23 ± 3°C. Symptoms on basil plants inoculated by injection or spraying with Carborundum were identical to those observed on basil in the field. Symptoms on bean and lettuce were similar to those described for P. viridiflava. The bacterium was reisolated from lesions of all species tested, fulfilling Koch's postulates. No lesions were observed on controls or on plants sprayed without Carborundum, suggesting that bacteria gain entry through wounds. The microorganism was identified by physiological tests and polymerase chain reaction as P. viridiflava. This is the first report of bacterial leaf spot of basil in Argentina. References: (1) R. Gitaitis et al. Plant Dis. 81:897, 1997. (2) E. L. Little et al. Plant Dis. 78:831, 1994.

2.
J Gen Virol ; 75 ( Pt 12): 3585-90, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7996151

ABSTRACT

Some properties of the particles of citrus ringspot virus (CtRSV) and the related citrus psorosis-associated virus (CPsAV) are described. The particles of CtRSV have been reported to be sinuous linear structures about 10 nm in diameter and of two lengths (300 to 500 nm and 1500 to 2500 nm) representing 'top' and 'bottom' sedimentation components. We show that these particles are collapsed double-stranded forms of nucleocapsid-like, highly flexuous open circles formed of filaments 3 to 4 nm in diameter. Top-component filaments had contour lengths of 600 to 1000 nm, i.e. twice that reported for the corresponding collapsed form. Bottom-component filaments had contour lengths about four times longer than those of top-component filaments. The structures suggest that CtRSV represents a new genus (possibly family) related to the tenuiviruses. However, we failed to demonstrate any serological relationship between CtRSV and several tenuiviruses; moreover, the capsid protein sizes and host ranges are quite different. We offer the name Ophiovirus for the proposed new genus.


Subject(s)
Citrus/virology , Plant Viruses/ultrastructure , Antibodies, Viral , Capsid/analysis , Microscopy, Electron , Microscopy, Immunoelectron , Plant Viruses/classification , Plant Viruses/immunology , Plant Viruses/isolation & purification , Ribulose-Bisphosphate Carboxylase , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...