Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
High Alt Med Biol ; 24(2): 127-131, 2023 06.
Article in English | MEDLINE | ID: mdl-37262193

ABSTRACT

van Veelen, Michiel J., Giulia Roveri, Ivo B. Regli, Tomas Dal Cappello, Anna Vögele, Michela Masè, Marika Falla, and Giacomo Strapazzon. Personal protective equipment protocols lead to a delayed initiation of patient assessment in mountain rescue operations. High Alt Med Biol. 24:127-131, 2023. Introduction: Mountain rescue operations can be challenging in austere environmental conditions and remote settings. Airborne infection prevention measures include donning of personal protective equipment (PPE), potentially delaying the approach to a patient. We aimed to investigate the time delay caused by these prevention measures. Methods: This randomized crossover trial consisted of 24 rescue simulation trials intended to be as realistic as possible, performed by mountain rescue teams in difficult terrain. We analyzed the time needed to perform an airborne infection prevention protocol during the approach to a patient. Time delays in scenarios involving patients already wearing versus not wearing face masks and gloves were compared using a linear mixed model Results: The airborne infection prevention measures (i.e., screening questionnaire, hand antisepsis, and donning of PPE) resulted in a time delay of 98 ± 48 (26-214) seconds on initiation of patient assessment. There was a trend to a shorter time to perform infection prevention measures if the simulated patient was already wearing PPE consisting of face mask and gloves (p = 0.052). Conclusion: Airborne infection prevention measures may delay initiation of patient assessment in mountain rescue operations and could impair clinical outcomes in time-sensitive conditions. Trial registration number 0105095-BZ Ethics Committee review board of Bolzano.


Subject(s)
Health Personnel , Rescue Work , Humans , Cross-Over Studies , Masks , Pandemics/prevention & control , Personal Protective Equipment , Time Factors
2.
JAMA Netw Open ; 6(5): e2313376, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37184835

ABSTRACT

Importance: Approximately 70% of individuals critically buried in avalanche debris die within 35 minutes as a result of asphyxial cardiac arrest. An artificial air-pocket device (AAPD) that separates inhaled air from exhaled air may delay the onset of severe hypoxemia and eventual asphyxia during snow burial. Objective: To investigate the efficacy of a new AAPD during snow burial in a supine position. Design, Setting, and Participants: This comparative effectiveness trial was performed in winter 2016 with data analysis in November 2016 and November 2022. Each trial used a simulated critical avalanche burial scenario, in which a trough was dug in a snow pile and an additional air pocket of 0.5 L volume was punched into the lateral wall for each control trial. All participants were buried in a supine position. Trials could be voluntarily terminated at any time, with a maximum length of 60 minutes; trials were automatically terminated if the participant's peripheral oxygen saturation (Spo2) dropped to less than 84%. Exposures: Each participant conducted 2 trials, one in which they breathed into the AAPD (intervention trial) and the other in which they breathed into the prepared air pocket (control trial). Main Outcomes and Measures: Measurements included Spo2, cerebral oxygenation, ventilatory parameters, respiratory gas concentrations, and visual-analogue scales. Kaplan-Meier survival curves and rank test for matched survival data were used to analyze the total burial time in each trial. Results: A total of 13 volunteers (9 men; mean [SD] age, 33 [8] years) were exposed to the intervention and control trials. Intervention trials were terminated less often (2 of 13 trials) as a result of hypoxemia than control trials (11 of 12 trials). Similarly, survival curves showed a longer duration of burial in the intervention compared with the control trials for the time to reach an Spo2 less than 84% (rank test for matched survival data: P = .003). The intervention trials, compared with the control trials, also had slower rates of decrease in fraction of inspired oxygen (mean [SD] rate, -0.8 [0.4] %/min vs -2.2 [1.2] %/min) and of increase in fraction of inspired carbon dioxide (mean [SD] rate, 0.5 [0.3] %/min vs 1.4 [0.6] %/min) and expired ventilation per minute (mean [SD] rate, 0.5 [1.0] L/min2 vs 3.9 [2.6] L/min2). Conclusions and Relevance: This comparative effectiveness trial found that the new AAPD was associated with delaying the development of hypoxemia and hypercapnia in supine participants in a critical burial scenario. Use of the AAPD may allow a longer burial time before asphyxial cardiac arrest, which might allow longer times for successful rescue by companions or by prehospital emergency medical services.


Subject(s)
Avalanches , Disasters , Heart Arrest , Adult , Humans , Male , Asphyxia , Hypoxia/etiology , Hypoxia/therapy , Comparative Effectiveness Research
3.
J Travel Med ; 30(5)2023 09 05.
Article in English | MEDLINE | ID: mdl-36881665

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, the use of face masks has been recommended or enforced in several situations; however, their effects on physiological parameters and cognitive performance at high altitude are unknown. METHODS: Eight healthy participants (four females) rested and exercised (cycling, 1 W/kg) while wearing no mask, a surgical mask or a filtering facepiece class 2 respirator (FFP2), both in normoxia and hypobaric hypoxia corresponding to an altitude of 3000 m. Arterialised oxygen saturation (SaO2), partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2), heart and respiratory rate, pulse oximetry (SpO2), cerebral oxygenation, visual analogue scales for dyspnoea and mask's discomfort were systematically investigated. Resting cognitive performance and exercising tympanic temperature were also assessed. RESULTS: Mask use had a significant effect on PaCO2 (overall +1.2 ± 1.7 mmHg). There was no effect of mask use on all other investigated parameters except for dyspnoea and discomfort, which were highest with FFP2. Both masks were associated with a similar non-significant decrease in SaO2 during exercise in normoxia (-0.5 ± 0.4%) and, especially, in hypobaric hypoxia (-1.8 ± 1.5%), with similar trends for PaO2 and SpO2. CONCLUSIONS: Although mask use was associated with higher rates of dyspnoea, it had no clinically relevant impact on gas exchange at 3000 m at rest and during moderate exercise, and no detectable effect on resting cognitive performance. Wearing a surgical mask or an FFP2 can be considered safe for healthy people living, working or spending their leisure time in mountains, high-altitude cities or other hypobaric environments (e.g. aircrafts) up to an altitude of 3000 m.


Subject(s)
Altitude , COVID-19 , Female , Humans , Masks , COVID-19/epidemiology , Pandemics , Oxygen , Hypoxia , Dyspnea
4.
Ann Emerg Med ; 81(6): 699-705, 2023 06.
Article in English | MEDLINE | ID: mdl-36669910

ABSTRACT

STUDY OBJECTIVE: We analyzed occupational accidents reported among Corpo Nazionale Soccorso Alpino e Speleologico (CNSAS) providers during mountain search and rescue operations and training events in Italy (1999 to 2019). METHODS: We extracted anonymized data from the CNSAS accident database for all cases of injured mountain search and rescue providers that activated CNSAS insurance (1999 to 2019). We report epidemiological characteristics, mechanisms, type, and severity of injury or illness, clinical outcome, and recovery time. RESULTS: A total of 784 cases of injuries in CNSAS mountain search and rescue providers were recorded. Forty-one percent of the cases occurred during rescue operations and 59% during training events. Overall, trauma was the main cause of injury (96%), whereas only 4% of the cases were classified as medical or environmental illnesses. Moderate injury (National Advisory Committee for Aeronautics II to III) occurred in 80% of the reported accidents. Recovery time differed based on the degree of accident severity. Fatalities occurred in 2% of the cases reported and occurred during rescue operations only. CONCLUSION: In this long-term retrospective analysis, we showed that accidents occurred among mountain search and rescue providers both during rescue operations and training events. Given the high prevalence and associated costs, it is of pivotal importance to understand the epidemiology and characteristics of occupational injury and illness among this out-of-hospital workforce to better inform future prevention strategies.


Subject(s)
Rescue Work , Wounds and Injuries , Humans , Accidents, Occupational , Retrospective Studies , Accidents , Databases, Factual , Italy
5.
J Appl Physiol (1985) ; 134(1): 133-141, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36476162

ABSTRACT

Altitude exposure may suppress appetite and hence provide a viable weight-loss strategy. While changes in food intake and availability as well as physical activity may contribute to altered appetite at altitude, herein we aimed to investigate the isolated effects of hypobaric hypoxia on appetite regulation and sensation. Twelve healthy women (age: 24.0 ± 4.2 years, body mass: 60.6 ± 7.0 kg) completed two 4-day sojourns in a hypobaric chamber, one in normoxia [PB = 761 mmHg, 262 m (NX)] and one in hypobaric hypoxia [PB = 493 mmHg (HH)] equivalent to 3,500-m altitude. Energy intake was standardized 4 days prior and throughout both sojourns. Plasma concentrations of leptin, acylated ghrelin, cholecystokinin (CCK), and cytokine growth differentiation factor 15 (GDF15) were determined every morning. Before and after breakfast, lunch, and dinner, appetite was assessed using visual analog scales. Body mass was significantly decreased following HH but not NX (-0.71 ± 0.32 kg vs. -0.05 ± 0.54 kg, condition: P < 0.001). Compared to NX, acylated ghrelin decreased throughout the HH sojourn (condition × time: P = 0.020), while leptin was higher throughout the entire HH sojourn (condition: P < 0.001). No differences were observed in CCK and GDF15 between the sojourns. Feelings of satiety and fullness were higher (condition: P < 0.001 and P = 0.013, respectively), whereas prospective food consumption was lower in HH than in NX (condition: P < 0.001). Our findings suggest that hypoxia exerts an anorexigenic effect on appetite-regulating hormones, suppresses subjective appetite sensation, and can induce weight loss in young healthy women. Among the investigated hormones, acylated ghrelin and leptin most likely explain the observed HH-induced appetite suppression.NEW & NOTEWORTHY This study investigated the effects of hypoxia on appetite regulation in women while strictly controlling for diet, physical activity, menstrual cycle, and environmental conditions. In young women, 4 days of altitude exposure (3,500 m) decreases body weight and circulating acylated ghrelin levels while preserving leptin concentrations. In line with the hormonal changes, altitude exposure induces alterations in appetite sensation, consisting of a decreased feeling of hunger and prospective food intake and an increased feeling of fullness and satiety.


Subject(s)
Altitude , Appetite , Humans , Female , Young Adult , Adult , Appetite/physiology , Ghrelin , Leptin , Hypoxia , Energy Intake , Weight Loss , Sensation
6.
Biol Open ; 11(6)2022 06 15.
Article in English | MEDLINE | ID: mdl-35616023

ABSTRACT

During recent decades, model organisms such as Drosophila melanogaster have made it possible to study the effects of different environmental oxygen conditions on lifespan and oxidative stress. However, many studies have often yielded controversial results usually assigned to variations in Drosophila genetic background and differences in study design. In this study, we compared longevity and ROS levels in young, unmated males of three laboratory wild-type lines (Canton-S, Oregon-R and Berlin-K) and one mutant line (Sod1n1) as a positive control of redox imbalance, under both normoxic and hypoxic (2% oxygen for 24 h) conditions. Lifespan was used to detect the effects of hypoxic treatment and differences were analysed by means of Kaplan-Meier survival curves and log-rank tests. Electron paramagnetic resonance spectroscopy was used to measure ROS levels and analysis of variance was used to estimate the effects of hypoxic treatment and to assess ROS differences between strains. We observed that the genetic background is a relevant factor involved in D. melanogaster longevity and ROS levels. Indeed, as expected, in normoxia Sod1n1 are the shortest-lived, while the wild-type strains, despite a longer lifespan, show some differences, with the Canton-S line displaying the lowest mortality rate. After hypoxic stress these variances are amplified, with Berlin-K flies showing the highest mortality rate and most evident reduction of lifespan. Moreover, our analysis highlighted differential effects of hypoxia on redox balance/unbalance. Canton-S flies had the lowest increase of ROS level compared to all the other strains, confirming it to be the less sensitive to hypoxic stress. Sod1n1 flies displayed the highest ROS levels in normoxia and after hypoxia. These results should be used to further standardize future Drosophila research models designed to investigate genes and pathways that may be involved in lifespan and/or ROS, as well as comparative studies on specific mutant strains.


Subject(s)
Drosophila melanogaster , Longevity , Animals , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Hypoxia/genetics , Longevity/genetics , Male , Oxygen/pharmacology , Reactive Oxygen Species/metabolism
7.
Am J Emerg Med ; 53: 54-58, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34979409

ABSTRACT

INTRODUCTION: Space travel is expected to grow in the near future, which could lead to a higher burden of sudden cardiac arrest (SCA) in astronauts. Current methods to perform cardiopulmonary resuscitation in microgravity perform below earth-based standards in terms of depth achieved and the ability to sustain chest compressions (CC). We hypothesised that an automated chest compression device (ACCD) delivers high-quality CC during simulated micro- and hypergravity conditions. METHODS: Data on CC depth, rate, release and position utilising an ACCD were collected continuously during a parabolic flight with alternating conditions of normogravity (1 G), hypergravity (1.8 G) and microgravity (0 G), performed on a training manikin fixed in place. Kruskal-Wallis and Mann-Withney U test were used for comparison purpose. RESULTS: Mechanical CC was performed continuously during the flight; no missed compressions or pauses were recorded. Mean depth of CC showed minimal but statistically significant variations in compression depth during the different phases of the parabolic flight (microgravity 49.9 ± 0.7, normogravity 49.9 ± 0.5 and hypergravity 50.1 ± 0.6 mm, p < 0.001). CONCLUSION: The use of an ACCD allows continuous delivery of high-quality CC in micro- and hypergravity as experienced in parabolic flight. The decision to bring extra load for a high impact and low likelihood event should be based on specifics of its crew's mission and health status, and the establishment of standard operating procedures.


Subject(s)
Cardiopulmonary Resuscitation , Hypergravity , Space Flight , Weightlessness , Cardiopulmonary Resuscitation/methods , Humans , Manikins
8.
J Am Heart Assoc ; 10(23): e021090, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34854317

ABSTRACT

Background Helicopter emergency medical services personnel operating in mountainous terrain are frequently exposed to rapid ascents and provide cardiopulmonary resuscitation (CPR) in the field. The aim of the present trial was to investigate the quality of chest compression only (CCO)-CPR after acute exposure to altitude under repeatable and standardized conditions. Methods and Results Forty-eight helicopter emergency medical services personnel were divided into 12 groups of 4 participants; each group was assigned to perform 5 minutes of CCO-CPR on manikins at 2 of 3 altitudes in a randomized controlled single-blind crossover design (200, 3000, and 5000 m) in a hypobaric chamber. Physiological parameters were continuously monitored; participants rated their performance and effort on visual analog scales. Generalized estimating equations were performed for variables of CPR quality (depth, rate, recoil, and effective chest compressions) and effects of time, altitude, carryover, altitude sequence, sex, qualification, weight, preacclimatization, and interactions were analyzed. Our trial showed a time-dependent decrease in chest compression depth (P=0.036) after 20 minutes at altitude; chest compression depth was below the recommended minimum of 50 mm after 60 to 90 seconds (49 [95% CI, 46-52] mm) of CCO-CPR. Conclusions This trial showed a time-dependent decrease in CCO-CPR quality provided by helicopter emergency medical services personnel during acute exposure to altitude, which was not perceived by the providers. Our findings suggest a reevaluation of the CPR guidelines for providers practicing at altitudes of 3000 m and higher. Mechanical CPR devices could be of help in overcoming CCO-CPR quality decrease in helicopter emergency medical services missions. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04138446.


Subject(s)
Aircraft , Altitude , Cardiopulmonary Resuscitation , Emergency Medical Services , Quality of Health Care , Cardiopulmonary Resuscitation/methods , Cardiopulmonary Resuscitation/standards , Cross-Over Studies , Emergency Medical Services/standards , Humans , Single-Blind Method
9.
Front Physiol ; 12: 670278, 2021.
Article in English | MEDLINE | ID: mdl-33995130

ABSTRACT

Cognitive function impairment due to high altitude exposure has been reported with some contradictory results regarding the possible selective cognitive domain involvement. We prospectively evaluated in 36 lowlanders, exposed for 3 consecutive days to an altitude of 3,269 m, specific cognitive abilities (attention, processing speed, and decision-making) required to safely explore the mountains, as well as to work at altitude. We simultaneously monitored the physiological parameters. Our study provides evidence of a reduced processing speed in lowlanders when exposed to altitude in the first 24 h. There was a fairly quick recovery since this impairment was no more detectable after 36 h of exposure. There were no clinically relevant effects on decision-making, while psychomotor vigilance was unaffected at altitude except for individuals with poor sleep. Significant changes were seen in physiological parameters (increased heart rate and reduced peripheral oxygen saturation). Our results may have practical implications, suggesting that individuals should practice prudence with higher ascent when performing risky activities in the first 24-36 h, even at altitudes below 3,500 m, due to an impairment of the cognitive performance that could worsen and lead to accidents.

10.
J Clin Med ; 10(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923620

ABSTRACT

Cardiopulmonary resuscitation (CPR) is considered an aerosol-generating procedure. Consequently, COVID-19 resuscitation guidelines recommend the use of personal protective equipment (PPE) during resuscitation. In this simulation of randomised crossover trials, we investigated the influence of PPE on the quality of chest compressions (CCs). Thirty-four emergency medical service BLS-providers performed two 20 min CPR sequences (five 2 min cycles alternated by 2 min of rest) on manikins, once with and once without PPE, in a randomised order. The PPE was composed of a filtering facepiece 3 FFP3 mask, safety glasses, gloves and a long-sleeved gown. The primary outcome was defined as the difference between compression depth with and without PPE; secondary outcomes were defined as differences in CC rate, release and the number of effective CCs. The participants graded fatigue and performance, while generalised estimating equations (GEE) were used to analyse data. There was no significant difference in CC quality between sequences without and with PPE regarding depth (mean depth 54 ± 5 vs. 54 ± 6 mm respectively), rate (mean rate 119 ± 9 and 118 ± 6 compressions per minute), release (mean release 2 ± 2 vs. 2 ± 2 mm) and the number of effective CCs (43 ± 18 vs. 45 ± 17). The participants appraised higher fatigue when equipped with PPE in comparison to when equipped without PPE (p < 0.001), and lower performance was appraised when equipped with PPE in comparison to when equipped without PPE (p = 0.031). There is no negative effect of wearing PPE on the quality of CCs during CPR in comparison to not wearing PPE.

11.
J Appl Physiol (1985) ; 130(1): 237-244, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33151777

ABSTRACT

Avalanche patients who are completely buried but still able to breathe are exposed to hypothermia, hypoxia, and hypercapnia (triple H syndrome). Little is known about how these pathological changes affect brain physiology. The study aim was to investigate the effect of hypothermia, hypoxia, and hypercapnia on brain oxygenation and systemic and cerebral hemodynamics. Anesthetized pigs were surface cooled to 28°C. Fraction of inspiratory oxygen ([Formula: see text]) was reduced to 17% and hypercapnia induced. Hemodynamic parameters and blood gas values were monitored. Cerebral measurements included cerebral perfusion pressure (CPP), brain tissue oxygen tension ([Formula: see text]), cerebral venous oxygen saturation ([Formula: see text]), and regional cerebral oxygen saturation (rSo2). Tests were interrupted when hemodynamic instability occurred or 60 min after hypercapnia induction. ANOVA for repeated measures was used to compare values across phases. There was no clinically relevant reduction in cerebral oxygenation ([Formula: see text], [Formula: see text], rSo2) during hypothermia and initial [Formula: see text] reduction. Hypercapnia was associated with an increase in pulmonary resistance followed by a decrease in cardiac output and CPP, resulting in hemodynamic instability and cerebral desaturation (decrease in [Formula: see text], [Formula: see text], rSo2). Hypercapnia may be the main cause of cardiovascular instability, which seems to be the major trigger for a decrease in cerebral oxygenation in triple H syndrome despite severe hypothermia.NEW & NOTEWORTHY Avalanche patients who are completely buried but still able to breathe are exposed to hypothermia, hypoxia, and hypercapnia (triple H syndrome). In a porcine model, there was no clinically relevant reduction in cerebral oxygenation during hypothermia and initial reduction of fraction of inspiratory oxygen ([Formula: see text]), as observed during hypercapnia. Hypercapnia may be the main cause of cardiovascular instability, which seems to be the major trigger for a decrease in cerebral oxygenation in triple H syndrome despite severe hypothermia.


Subject(s)
Avalanches , Hypothermia , Animals , Brain , Hemodynamics , Humans , Hypercapnia , Hypoxia , Oxygen , Swine
12.
Front Med (Lausanne) ; 8: 808025, 2021.
Article in English | MEDLINE | ID: mdl-35198571

ABSTRACT

Completely avalanche-buried patients are frequently exposed to a combination of hypoxia and hypercapnia with a risk of normothermic cardiac arrest. Patients with a long burial time and an air pocket are exposed to a combination of hypoxia, hypercapnia, and hypothermia which may lead to the development of the "triple H syndrome". This specific combination has several pathophysiological implications, particularly on the cardiovascular system and oxygen transport (oxygen supply and oxygen consumption). To examine the effects on hemoglobin oxygen affinity, we investigated venous blood samples from 15 female and 15 male healthy subjects. In a factorial design of four different carbon dioxide partial pressure (PCO2) levels (20, 40, 60, and 80 mmHg) and five different temperature levels (13.7°C, 23°C, 30°C, 37°C, and 42°C), 30 unbuffered whole blood samples were analyzed in a newly developed in vitro method for high-throughput oxygen dissociation curve (ODC) measurements. P50s, Hill coefficients, CO2-Bohr coefficients, and temperature coefficients were analyzed using a linear mixed model (LMM). Mean P50 at baseline (37°C, 40 mmHg PCO2) was 27.1 ± 2.6 mmHg. Both CO2-Bohr (p < 0.001) and temperature coefficients (p < 0.001) had a significant effect on P50. The absolute CO2 effect was still pronounced at normothermic and febrile temperatures, whereas at low temperatures, the relative CO2 effect (expressed by CO2-Bohr coefficient; p < 0.001, interaction) was increased. The larger impact of PCO2 on oxygen affinity at low temperature may be caused by the competition of 2,3-BPG with PCO2 and the exothermic binding characteristic of 2,3-BPG. In a model of an avalanche burial, based on published data of CO2 levels and cooling rates, we calculated the resulting P50 for this specific condition based on the here-reported PCO2 and temperature effect on ODC. Depending on the degree of hypercapnia and hypothermia, a potentially beneficial increase in hemoglobin oxygen affinity in the hypoxic condition might ensue.

13.
Resuscitation ; 158: 175-182, 2021 01.
Article in English | MEDLINE | ID: mdl-33249253

ABSTRACT

BACKGROUND: A sufficient supply of oxygen is crucial to avoid hypoxic cardiac arrest and brain damage within 30 min in completely-buried avalanche victims. Snow density influences levels of hypoxia and hypercapnia. The goal of this study was to investigate the effects of hypoxia and hypercapnia on cerebral oxygenation (ScO2) in humans breathing into an artificial air pocket. METHODS: Each subject breathed into a closed system (air-tight face mask - plastic tube - snow air-pocket of 4 L) up to 30 min. Each subject performed three tests in different snow densities. ScO2 was measured by a near-infrared spectroscopy (NIRS) device. Measurements included peripheral oxygen saturation (SpO2), end-tidal carbon dioxide (ETCO2), air pocket gases and blood gases. Snow density was assessed via standard methods and micro-computed tomography. Based on predetermined criteria, tests were classified based on whether they were terminated before 30 min and the reason for termination. The categories were: completed tests (30 min), tests terminated before 30 min when SpO2 dropped to ≤75% and tests that were terminated before 30 min by requests of the subjects. General linear models were used to compare termination groups for changes in ScO2, ETCO2, SpO2 and air pocket gases, and a multivariate analysis was used to detect factor independent effects on ScO2. RESULTS: ScO2 was decreased in the group in which the tests were terminated for SpO2 ≤ 75% caused by a decrease in oxygen supply in high snow densities. In the completed tests, an increase in ScO2 occurred despite decreased oxygen supply and decreased carbon dioxide removal. CONCLUSIONS: Our data show that ScO2 determined by NIRS was not always impaired in humans breathing into an artificial air pocket despite decreased oxygen supply and decreased carbon dioxide removal. This may indicate that in medium to low snow densities brain oxygenation can be sufficient, which may reflect the initial stage of the triple H (hypothermia, hypoxia, and hypercapnia) syndrome. In high snow densities, ScO2 showed a significant decrease caused by a critical decrease in oxygen supply. This could lead to a higher risk of hypoxic cardiac arrest and brain damage.


Subject(s)
Avalanches , Hypercapnia , Carbon Dioxide , Humans , Hypoxia , Oxygen , X-Ray Microtomography
14.
Wilderness Environ Med ; 31(2): 204-208, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31843349

ABSTRACT

INTRODUCTION: Suspension syndrome describes a potentially life-threatening event during passive suspension on a rope. The pathophysiological mechanism is not fully understood; however, the most widespread hypothesis assumes blood pools in the lower extremities, prompting a reduction in cardiac preload and cardiac output and leading to tissue hypoperfusion, loss of consciousness, and death. The aim of this study was to assess venous pooling by ultrasound in simulated suspension syndrome using human subjects. METHODS: In this trial, 20 healthy volunteers were suspended in a sit harness for a maximum of 60 min with and without preceding exercise. Venous pooling was assessed by measuring the diameter of the superficial femoral vein (SFV) with ultrasound at baseline in supine and standing positions as well as during and after suspension. RESULTS: SFV diameter increased and blood flow became progressively sluggish. In 30% of the tests, near syncope occurred. However, SFV diameter did not differ between subjects with and without near syncope. CONCLUSIONS: Free hanging in a harness leads to rapid venous pooling in the lower limbs. The most important measure to prevent suspension syndrome might be constant movement of the legs.


Subject(s)
Mountaineering , Oxygen Consumption , Syncope, Vasovagal/physiopathology , Adult , Humans , Male , Syncope, Vasovagal/diagnostic imaging , Syncope, Vasovagal/etiology , Ultrasonography , Weightlessness/adverse effects , Wilderness Medicine , Young Adult
15.
Article in English | MEDLINE | ID: mdl-31892182

ABSTRACT

Climbing has become an increasingly popular sport, and the number of accidents is increasing in parallel. We aim at describing the characteristics of climbing accidents leading to severe (multisystem) trauma using data from the International Alpine Trauma Registry (IATR) and at reporting the results of a systematic review of the literature on the epidemiology, injury pattern, severity and prevention of climbing accidents. We found that climbing accidents are a rare event, since approximately 10% of all mountain accidents are climbing related. Climbing accidents mainly affect young men and mostly lead to minor injuries. Fall is the most common mechanism of injury. Extremities are the most frequently injured body part. However, in multisystem climbing-related trauma, the predominant portion of injuries are to head/neck, chest and abdomen. The fatality rate of climbing accidents reported in the literature varies widely. Data on climbing accidents in general are very heterogeneous as they include different subspecialties of this sport and report accidents from different regions. A number of risk factors are accounted for in the literature. Appropriate training, preparation and adherence to safety standards are key in reducing the incidence and severity of climbing accidents.


Subject(s)
Accidental Falls/statistics & numerical data , Emergency Medical Services , Mountaineering/injuries , Registries , Data Analysis , Humans , Injury Severity Score , Prospective Studies
16.
High Alt Med Biol ; 19(1): 7-14, 2018 03.
Article in English | MEDLINE | ID: mdl-29596018

ABSTRACT

Brodmann Maeder, Monika, Hermann Brugger, Matiram Pun, Giacomo Strapazzon, Tomas Dal Cappello, Marco Maggiorini, Peter Hackett, Peter Baärtsch, Erik R. Swenson, Ken Zafren (STAR Core Group), and the STAR Delphi Expert Group. The STARdata reporting guidelines for clinical high altitude research. High AltMedBiol. 19:7-14, 2018. AIMS: The goal of the STAR (STrengthening Altitude Research) initiative was to produce a uniform set of key elements for research and reporting in clinical high-altitude (HA) medicine. The STAR initiative was inspired by research on treatment of cardiac arrest, in which the establishment of the Utstein Style, a uniform data reporting protocol, substantially contributed to improving data reporting and subsequently the quality of scientific evidence. MATERIALS AND METHODS: The STAR core group used the Delphi method, in which a group of experts reaches a consensus over multiple rounds using a formal method. We selected experts in the field of clinical HA medicine based on their scientific credentials and identified an initial set of parameters for evaluation by the experts. RESULTS: Of 51 experts in HA research who were identified initially, 21 experts completed both rounds. The experts identified 42 key parameters in 5 categories (setting, individual factors, acute mountain sickness and HA cerebral edema, HA pulmonary edema, and treatment) that were considered essential for research and reporting in clinical HA research. An additional 47 supplemental parameters were identified that should be reported depending on the nature of the research. CONCLUSIONS: The STAR initiative, using the Delphi method, identified a set of key parameters essential for research and reporting in clinical HA medicine.


Subject(s)
Altitude Sickness/diagnosis , Altitude Sickness/physiopathology , Altitude , Biomedical Research/standards , Guidelines as Topic , Research Design/standards , Consensus , Delphi Technique , Humans
18.
Sci Rep ; 7(1): 17675, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247235

ABSTRACT

Breathing under snow, e.g. while buried by a snow avalanche, is possible in the presence of an air pocket, but limited in time as hypoxia and hypercapnia rapidly develop. Snow properties influence levels of hypoxia and hypercapnia, but their effects on ventilation and oxygenation in humans are not fully elucidated yet. We report that in healthy subjects breathing into snow with an artificial air pocket, snow density had a direct influence on ventilation, oxygenation and exhaled CO2. We found that a rapid decline in O2 and increase in CO2 were mainly associated with higher snow densities and led to premature interruption due to critical hypoxia (SpO2 ≤ 75%). However, subjects in the low snow density group demonstrated a higher frequency of test interruptions than expected, due to clinical symptoms related to a rapid CO2 accumulation in the air pocket. Snow properties determine the oxygen support by diffusion from the surrounding snow and the clearance of CO2 by diffusion and absorption. Thus, snow properties are co-responsible for survival during avalanche burial.


Subject(s)
Hypoxia/physiopathology , Adult , Carbon Dioxide/metabolism , Disasters , Humans , Hypercapnia/physiopathology , Hypoxia/metabolism , Male , Oxygen/metabolism , Respiration , Snow , Ventilation/methods
19.
Eur J Emerg Med ; 24(6): 398-403, 2017 Dec.
Article in English | MEDLINE | ID: mdl-26990382

ABSTRACT

AIM: The aim of this study is to describe the prehospital management and outcome of avalanche patients with out-of-hospital cardiac arrest in Tyrol, Austria, for the first time since the introduction of international guidelines in 1996. PATIENTS AND METHODS: This study involved a retrospective analysis of all avalanche accidents involving out-of-hospital cardiac arrest between 1996 and 2009 in Tyrol, Austria. RESULTS: A total of 170 completely buried avalanche patients were included. Twenty-eight victims were declared dead at the scene. Of 34 patients with short burial, cardiopulmonary resuscitation (CPR) was performed in 27 (79%); 15 of these patients (56%) were transported to hospital with ongoing CPR and four patients were rewarmed with extracorporeal circulation; no patient survived. Of 108 patients with long burial, 49 patients had patent or unknown airway status; CPR was performed in 25 of these patients (51%) and 14 patients (29%) were transported to hospital. Four patients were rewarmed, but only one patient with witnessed cardiac arrest survived. Since the introduction of guidelines in 1996, there has been a marginally significant increase in the rate of documenting airway assessment, but no change in documenting the duration of burial or CPR. CONCLUSION: CPR is continued to hospital admission in patients with short burial and asphyxial cardiac arrest, but withheld or terminated at the scene in patients with long burial and possible hypothermic cardiac arrest. Insufficient transfer of information from the accident site to the hospital may partially explain the poor outcome of avalanche victims with out-of-hospital cardiac arrest treated with emergency cardiac care.


Subject(s)
Avalanches/mortality , Cardiopulmonary Resuscitation/mortality , Cause of Death , Out-of-Hospital Cardiac Arrest/mortality , Out-of-Hospital Cardiac Arrest/therapy , Triage , Adolescent , Adult , Age Factors , Aged , Austria , Cardiopulmonary Resuscitation/methods , Chi-Square Distribution , Child , Cohort Studies , Female , Humans , Logistic Models , Male , Middle Aged , Retrospective Studies , Rewarming/methods , Risk Assessment , Sex Factors , Survival Analysis , Time Factors , Young Adult
20.
Sci Rep ; 6: 32426, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27579527

ABSTRACT

High altitude is the most intriguing natural laboratory to study human physiological response to hypoxic conditions. In this study, we investigated changes in reactive oxygen species (ROS) and oxidative stress biomarkers during exposure to hypobaric hypoxia in 16 lowlanders. Moreover, we looked at the potential relationship between ROS related cellular damage and optic nerve sheath diameter (ONSD) as an indirect measurement of intracranial pressure. Baseline measurement of clinical signs and symptoms, biological samples and ultrasonography were assessed at 262 m and after passive ascent to 3830 m (9, 24 and 72 h). After 24 h the imbalance between ROS production (+141%) and scavenging (-41%) reflected an increase in oxidative stress related damage of 50-85%. ONSD concurrently increased, but regression analysis did not infer a causal relationship between oxidative stress biomarkers and changes in ONSD. These results provide new insight regarding ROS homeostasis and potential pathophysiological mechanisms of acute exposure to hypobaric hypoxia, plus other disease states associated with oxidative-stress damage as a result of tissue hypoxia.


Subject(s)
Altitude Sickness/blood , Hypoxia/blood , Intracranial Hypertension/blood , Adult , Altitude Sickness/diagnostic imaging , Altitude Sickness/physiopathology , Antioxidants/metabolism , Dinoprost/analogs & derivatives , Dinoprost/blood , Female , Humans , Hypoxia/diagnostic imaging , Hypoxia/physiopathology , Intracranial Hypertension/diagnostic imaging , Intracranial Hypertension/physiopathology , Intracranial Pressure , Male , Middle Aged , Myelin Sheath/pathology , Optic Nerve/diagnostic imaging , Optic Nerve/pathology , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...